Group velocity and third-order dispersion comparison in externally and directly modulated radio over fiber link

  • R. S. AshaEmail author
  • V. K. Jayasree
  • Mhatli Sofien
  • Xavier Fernando
Research Article


Radio over is an attractive solution for broadband wireless access. In this paper, the performance of externally and direct intensity modulated RoF links is analyzed in the presence of the group velocity dispersion and third-order dispersion of the optical fiber. An external modulation system with dual electrode lithium niobate Mach–Zehnder modulator (DE-MZM) and direct modulation system with vertical-cavity surface-emitting laser (VCSEL) are considered. Both modulation schemes are tested using Gaussian optical pulses. Simulations are performed with the same values for common global parameters for both schemes. Although external modulation is a generally considered more advanced, our simulations show that the direct modulation technique with VCSEL shows a more robust performance. The performances are compared using performance parameters like Q factor, eye diagram, BER and RF signal amplitude.


Group velocity dispersion (GVD) Third-order dispersion (TOD) Vertical-cavity surface-emitting laser Intensity modulation Lithium niobate Mach–Zehnder modulator 



  1. 1.
    J.D. McKinney, K.J. Williams, Sampled analog optical links. IEEE Trans. Microw. Theory Tech. 57(8), 2093–2099 (2009)CrossRefGoogle Scholar
  2. 2.
    X.N. Fernando, A.B. Sesay, Adaptive asymmetric linearization of microwave fiber optic links for wireless access. IEEE Trans. Veh. Technol. 51(6), 1576–1596 (2002)CrossRefGoogle Scholar
  3. 3.
    E.J. Gualda, L.C. Gomez-Pavon, J.P. Torres, Compensation of third-order dispersion in a 100 Gb/s single channel system with in-line fibre Bragg gratings. J. Modern Opt. (Taylor & Fransis) 52(9), 1197–1206 (2005)CrossRefzbMATHGoogle Scholar
  4. 4.
    X. Fernando, A. Sesay, Characteristics of directly modulated ROF links for wireless access, in Proceedings of the Canadian Conference on Electrical and Computer Engineering (CCECE’2004), vol 4, pp. 2167–2170 (2004)Google Scholar
  5. 5.
    X.N. Fernando, A.B. Sesay, Higher order adaptive filter characterization of microwave fiber optic link nonlinearity, in Proceedings of the SPIE, Photonic west 2000, vol 3927-06, pp. 39–49 (2000)Google Scholar
  6. 6.
    S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, M. Izutsu, Single side band modulation performance of a \(\text{ LiNbO }_{3}\) integrated modulator consisting of four-phase modulator waveguides. IEEE Photon. Technol. Lett. 13(4), 364–366 (2001)CrossRefGoogle Scholar
  7. 7.
    X.L. Liu, Z.J. Liu, J.D. Li, T. Shang, Performance improvement of optical single sideband signal using an integrated Mach–Zehnder modulator. Fiber Integr. Opt. 29(6), 453–465 (2010)CrossRefGoogle Scholar
  8. 8.
    B.A. Khawaja, M.J. Cryan, Characterization of multimode fibers for use in millimeter wave radio-over-fiber systems. Microw. Opt. Technol. Lett. 50(8), 2005–2007 (2008)CrossRefGoogle Scholar
  9. 9.
    J.G. Zhao, Z.J. Liu, X.L. Liu, T. Shang, P. Yue, Generation of radio signals using a novel Mach–Zehnder modulator with four arms. Opt. Commun. 282(22), 4353–4357 (2009)CrossRefGoogle Scholar
  10. 10.
    R.C. Alferness et al., The evolution of configurable wavelength multiplexed optical networks VA historical perspective. Proc. IEEE 100(5), 1023–1034 (2012)CrossRefGoogle Scholar
  11. 11.
    C. Lim et al., Fiber-wireless networks and subsystem technologies. J. Lightw. Technol. 28(4), 390–405 (2010)CrossRefGoogle Scholar
  12. 12.
    Mukherjee, Enabling technologies: building blocks, Optical WDM Networks (Springer, Boston, 2006), pp. 43–44Google Scholar
  13. 13.
    J.P.R. Lacey, G.J. Pendock, R.S. Tucker, All-optical 1300-nm to 1550-nm wavelength conversion using cross-phase modulation in a semiconductor optical amplifier. IEEE Photon. Technol. Lett. 8(7), 885–887 (2002)CrossRefGoogle Scholar
  14. 14.
    Y. Wang et al., Hollow-core photonic crystal fibre for high power laser beam delivery. High Power Laser Sci. Eng. 1(1), 17–28 (2013)CrossRefGoogle Scholar
  15. 15.
    H. Chi, J.P. Yao, Waveform distortions due to second- order dispersion and dispersion mismatches in a temporal pulse-shaping system. J. Lightw. Technol. 25(11), 3528–3535 (2007)CrossRefGoogle Scholar
  16. 16.
    F. Ramos, J. Marti, V. Polo et al., Compensation of chromatic dispersion effects in microwave/millimeter-wave optical systems using four-wave-mixing induced in dispersion shifted fibers. IEEE Photon. Technol. Lett. 11(9), 1171–1173 (1999)CrossRefGoogle Scholar
  17. 17.
    J. Maeda, Y. Fukuchi, Numerical study of nonlinear pulse transmission in a fiber link with periodical dispersion slope compensation. J. Lightw. Technol. 23(3), 1189–1198 (2005)CrossRefGoogle Scholar
  18. 18.
    S. Wen, Bi-end dispersion compensation for ultra long optical communication system. J. Lightw. Technol. 17(5), 792–798 (1999)CrossRefGoogle Scholar
  19. 19.
    M. Seimetz, High-order modulation for optical fiber transmission, vol. 43, Springer series in optical sciences (Springer, Berlin, 2009)CrossRefGoogle Scholar
  20. 20.
    Z. Li, H. Chi, X. Zhang, J. Yao et al., Pulse distortions due to third-order dispersion and dispersion mismatches in a phase-modulator—based temporal pulse shaping system. J. Lightw. Technol. 28(19), 2865–2872 (2010)CrossRefGoogle Scholar
  21. 21.
    M. Nishimura et al., Optical fibers and fiber dispersion compensators for high-speed optical communication. J. Opt. Fiber Commun. Rep. 2(2), 115–139 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2019

Authors and Affiliations

  • R. S. Asha
    • 1
    Email author
  • V. K. Jayasree
    • 2
  • Mhatli Sofien
    • 3
  • Xavier Fernando
    • 4
  1. 1.Government Model Engineering CollegeThrikkakaraIndia
  2. 2.Government Engineering College, CherthalaAlappuzhaIndia
  3. 3.SERCOM-LabsEPT Université de CarthageLa Marsa, TunisTunisia
  4. 4.Ryerson UniversityTorontoCanada

Personalised recommendations