2D photoluminescence mapping of porous silicon using confocal technique

  • Atakan Abusoglu
  • Tevhit KaracaliEmail author
  • Hasan Efeoglu
Research Article


Silicon crystal in porous state can be featured by some extra optical properties. The method widely used in the literature for porous formation is anodic anodization technique due to its simplicity and ease of construction of the measurement cell. However, the porosity distribution attained by this technique strongly depends on anodization cell structure and considered conditions, thus requiring experience and care in fabrication process. Based on some fabrication tolerances and unexpected environmental conditions, surface morphology and optical activity of a created porous layer in two or three dimensions can significantly vary. This challenging circumstance thus requires some specifically designed techniques to measure and evaluate the surface morphology and optical activity of created porous layers. Confocal imaging systems commonly used in the literature for 3D imaging of biological systems due to their exceptional superior resolution, down to nanometer scale. At the same time this technique has a potential of semiconductor characterization. Recent advances in laser technology and highly accurate signal detection systems during the last decade provided significantly better signal/noise ratios in confocal imaging systems. In this study, a two-dimensional optical reflection characteristic from a porous silicon is mapped using a designed confocal system with selected wavelength or photoluminescence. From the mapping, we found the following important points. First, physically unobservable non-uniform porosity formation arising from gas bubbles during anodization process can be detected by the proposed confocal system. Second, comparison of wide- and local-area photoluminescence demonstrated that wide-area luminescence is composition of distinct local-area luminescence values from different areas.


Photoluminescence Confocal technique Porous silicon 



This work was supported by State Planning Organization DPT-Turkey under Grant No: 102T227 and The Scientific Research Projects Unit of Ataturk University through Project No: BAP-2004-118.


  1. 1.
    L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    T. Karacali, B. Cakmak, H. Efeoğlu, Aging of porous silicon and the origin of blue Shift. Opt. Express 11(10), 1237 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Z.Q. Fang, M. Hu, W. Zhang, X.-R. Zhang, H.-B. Yang, Mechanical properties of porous silicon by depth-sensing nanoindentation techniques. Thin Solid Films 517(9), 2930–2935 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    R.C. Anderson, R.S. Muller, C.W. Tobias, Investigations of the electrical properties of porous silicon. J. Electrochem. Soc. 138(11), 3406–3411 (1991)CrossRefGoogle Scholar
  5. 5.
    U.C. Hasar, I.Y. Ozbek, B. Cavusoglu, T. Karacali, H. Efeoglu, M. Ertugrul, J.J. Barroso, Characterization of porous silicon Fabry–Pérot sensors for reflectivity and transmittivity measurements. IEEE J. Sel. Topics Quantum Electron. 21(4), 2900110 (2015)Google Scholar
  6. 6.
    T. Karacali, U.C. Hasar, I.Y. Ozbek, E.A. Oral, H. Efeoglu, Novel design of porous silicon based sensor for reliable and feasible chemical gas vapor detection. J. Lightwave Technol. 31(2), 295–305 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Tevhit Karacali, Murat Alanyalioglu, Hasan Efeoglu, Single and double Fabry–Pérot structure based on porous silicon for chemical sensors. IEEE Sens. J. 9(12), 1667 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    K.H. Tantawi, B. Berdiev, R. Cerro, J.D. Williams, Porous silicon membrane for investigation of transmembrane proteins. Superlattices Microstruct. 58, 72–80 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    T.L. Lin, L. Sadwick, K.L. Wang, Y.C. Kao, R. Hull, C.W. Nieh, D.N. Jamieson, J.K. Liu, Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon. Appl. Phys. Lett. 51, 814 (1987)ADSCrossRefGoogle Scholar
  10. 10.
    H. Ishikawa, K. Shimanaka, F. Tokura, Y. Hayashi, Y. Hara, M. Nakanishi, MOCVD growth of GaN on porous silicon substrates. J. Cryst. Growth 310, 4900–49003 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    C. Delerue, G. Allan, M. Lannoo, Theoretical aspects of the luminescence of porous silicon. Phys. Rev. B 48, 11024–11036 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    S. Sinha, S. Banerjee, B.M. Arora, Photoluminescence-excitation spectroscopy of porous silicon. Phys. Rev. B 49, 5706–5709 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    L. Burstein, Y. Shapira, J. Partee, J. Shinar, Y. Lubianiker, I. Balberg, Surface photovoltage spectroscopy of porous silicon. Phys. Rev. B 55, 1930–1933 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    S.M. Hossain, S. Chakraborty, S.K. Dutta, J. Das, H. Saha, Stability in photoluminescence of porous silicon. J. Lumin. 91(3), 195–202 (2000)CrossRefGoogle Scholar
  15. 15.
    P.M. Fauchet, L. Tsybeskov, C. Peng, S.P. Duttagupta, J. von Behren, Y. Kostoulas, J.M.V. Vandyshev, K.D. Hirschman, Light-emitting porous silicon: materials science, properties, and device applications. IEEE J. Sel. Top. Quantum Electron. 1(4), 1126–1139 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    R.S. Dubey, D.K. Gautam, Synthesis and characterization of nanocrystalline porous silicon layer for solar cells applications. J. Optoelectron. Biomed. Mater. 1(1), 8–14 (2009)Google Scholar
  17. 17.
    J. Dian, A. Macek, D. Niznansky, I. Nemec, V. Vrkoslav, T. Chvojka, I. Jelinek, SEM and HRTEM study of porous silicon—relationship between fabrication, morphology and optical properties. Appl. Surf. Sci. 238(1–4), 169–174 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    M.B. Prigozhin, P. Shiwsankar, W.R. Algar, U.J. Krull. Porous silicon: electrochemical microstructuring, photoluminescence and covalent modification, in Proceedings of SPIE, vol 7099 (2008), p. 1–11Google Scholar
  19. 19.
    Z. Chen, Z. Xu, Preparation and photoluminescence properties of porous silicon, in Proceedings of SPIE, vol 7516 (2009) 75160LGoogle Scholar
  20. 20.
    J. Martin, F. Cichos, C. von Borczyskowski, Spectroscopy of single silicon nanoparticles. J. Lumin. 108, 347–350 (2004)CrossRefGoogle Scholar
  21. 21.
    P. Doia, A. Petris, I. Dancus, V.I. Vlad, Confocal microscopy for visualization and characterization of porous silicon samples, in Proceedings of SPIE, vol 6785 (2007), 67850TGoogle Scholar
  22. 22.
    L. De Stefano, S. D’Auria, Confocal imaging of protein distributions in porous silicon optical structures. J. Phys. Condens. Matter 19, 395009 (2007)CrossRefGoogle Scholar
  23. 23.
    J.E. Alfonso-Orjuela, D.F. Andrade-Zambrano, J.M. Arroyo-Osorio, Refractive index of multiline nanosecond laser-induced periodic surface structures and porous silicon. Rev. Mex. Fisica 57, 475–480 (2011)Google Scholar
  24. 24.
    E. Pellicer, E. Rossinyol, M. Rosado, M. Guerrero, R. Domingo-Roca, S. Surinach, O. Castell, M.D. Baro, M. Roldan, J. Sort, White-light photoluminescence and photoactivation in cadmium sulfide embedded in mesoporous silicon dioxide templates studied by confocal laser scanning microscopy. J. Coll. Interf. Sci. 407, 47–59 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Qu, H. Zhou, X. Duan, Porous silicon nanowires. Nanoscale 3, 4060–4068 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    V.S. Vendemani, S.V.S. Nageswara Rao, A.P. Pathak, Structural and optical properties of porous silicon prepared by anodic etching of irradiated silicon. Nucl. Inst. Methods Phys. Res. B 315, 188–191 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    S. Congli, H. Hao, F. Huanhuan, X. Jingjing, C. Yu, J. Yong, Synthesis of porous silicon nano-wires and the emission of red luminescence. App. Surf. Sci. 282, 259–263 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    W.B. Amos, J.G. White, How the confocal laser scanning microscope entered biological research. Biol. Cell 95(6), 335–342 (2003)CrossRefGoogle Scholar
  29. 29.
    S.W. Hell, Far-field optical nanoscopy. Science 316, 1153–1158 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    L. Schermelleh, R. Heintzmann, H. Leonhardt, A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165–175 (2010)CrossRefGoogle Scholar
  31. 31.
    J. Bierwagen, I. Testa, J. Fölling, D. Wenzel, S. Jakobs, C. Eggeling, S.W. Hell, Far-field autofluorescence nanoscopy. Nano Lett. 10, 4249–4252 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    M. Heilemann, Fluorescence microscopy beyond the diffraction limit. J. Biotechnol. 149, 243–251 (2010)CrossRefGoogle Scholar
  33. 33.
    S.W. Paddock (ed.), Confocal Microscopy Methods and Protocols (Humana Press, Totowa, 1999), pp. 1–34Google Scholar
  34. 34.
    D.B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley-Liss, Hoboken, 2001)Google Scholar
  35. 35.
    J.B. Pawley, Handbook of Biological Confocal Microscopy, 3rd edn. (Springer, New York, 2006)CrossRefGoogle Scholar
  36. 36.
    R.L. Price, W.G. Jerome, Basic Confocal Microscopy (Springer, New York, 2011)CrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics Engineering, Faculty of EngineeringAtatürk UniversityErzurumTurkey

Personalised recommendations