Journal of Optics

, Volume 48, Issue 1, pp 104–112 | Cite as

Current–voltage characteristics of new organic natural dye extracted from Terminalia chebula for dye-sensitized solar cell applications

  • M. Rekha
  • M. Kowsalya
  • S. Ananth
  • P. VivekEmail author
  • RO. MU. Jauhar
Research Article


Low-cost and environment-friendly dye-sensitized solar cells were fabricated using titanium dioxide nanoparticles sensitized by a new natural dye extracted from Terminalia chebula dry fruits. Pure titanium dioxide (TiO2) nanoparticles in anatase phase were synthesized by sol–gel process and pre-dye-treated TiO2 nanoparticles were synthesized by mixing the natural dye during synthesis itself using our modified sol–gel process. This pre-dye treatment with natural dye has yielded colored TiO2 nanoparticles with uniform adsorption of natural dye, reduced agglomeration, less dye aggregation and improved morphology. The pure and pre-dye-treated TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Dye-sensitized solar cells fabricated using the pure and pre-dye-treated TiO2 nanoparticles sensitized by T. chebula natural dye showed promising solar light to electron conversion efficiencies of 0.86% and 1.49%, respectively. The pre-dye-treated TiO2-based DSSC showed 73% improvement in efficiency when compared to conventional DSSC.


Natural dye Pre-dye-treated TiO2 Terminalia chebula DSSC 


  1. 1.
    Y. Takeda, N. Kato, K. Higuchi, A. Takeichi, T. Motohiro, S. Fukumoto, T. Sano et al., Monolithically series interconnected transparent modules of dye: sensitized solar cells. Sol. Energy Mater. Sol. Cells 93, 808–811 (2009)CrossRefGoogle Scholar
  2. 2.
    H.-J. Kim, D.-E. Kim, Effect of surface roughness of top cover layer on the efficiency of dye sensitized solar cell. Sol. Energy 86, 2049–2055 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    C.S. Chou, R.Y. Yang, M.H. Weng, C.H. Yeh, Preparation of TiO2/nano-metal composite particles and their applications in dye-sensitized solar cells. Powder Technol. 194, 95–105 (2009)CrossRefGoogle Scholar
  4. 4.
    K. Kalyanasundaram, M. Graetzel, Artificial photosynthesis: biometric approaches to solar energy conversion and storage. Curr. Opin. Biotechnol. 21, 298–310 (2010)CrossRefGoogle Scholar
  5. 5.
    M. Graetzel, Review: dye sensitized solar cells. J. Photochem. Photobiol. C 4, 145–153 (2003)CrossRefGoogle Scholar
  6. 6.
    G. Calogero, J.-H. Yum, A. Sinopoli, G. Di Marco, M. Graetzel, M.K. Nazeeruddin, Anthocyanins and betalanins as light-harvesting pigments for dye sensitized solar cells. Sol. Energy 86, 1563–1575 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    M. Graetzel, Conversion of sunlight to electric power by nano crystalline dye-sensitized solar cells. J. Photochem. Photobiol. A 164, 3–14 (2004)CrossRefGoogle Scholar
  8. 8.
    B. O’Regan, M. Graetzel, A low cost high-efficiency solar cell based on dye- sensitized colloidal TiO2 particles. Nature 353, 737–739 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    C.S. Chou, R.Y. Yang, M.H. Weng, C.H. Yeh, Preparation of TiO2/dye composite particles and their applications in dye-sensitized solar cell. Powder Technol. 187, 181–189 (2008)CrossRefGoogle Scholar
  10. 10.
    S.N. Karthick, K. Prabakar, A. Subramania, J.-T. Hong, J.-J. Jang, H.-J. Kim, Formation of anatase TiO2 nanoparticles by simple polymer gel technique and their properties. Powder Technol. 205, 36–41 (2011)CrossRefGoogle Scholar
  11. 11.
    D.-W. Park, Y.-K. Choi, K.-J. Hwang, J.-W. Lee, J.K. Park, H.D. Jang, H.-S. Park et al., Adv. Powder Technol. 22, 771–776 (2011)CrossRefGoogle Scholar
  12. 12.
    S.C. Choi, S.H. Sohn, Synthesis and physical properties of TiO2 microparticles coated by a sol–gel method and their application to dye-sensitized solar cells. Powder Technol. 226, 157–164 (2012)CrossRefGoogle Scholar
  13. 13.
    H. Chang, Y.-J. Lo, Pomegranate leaves and mulberry fruit as natural sensitizers for dye sensitized solar cells. Sol. Energy 84, 1833–1837 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    G. Calogero, I. Citro, G. Di Marco, S. Armeli Minicante, M. Morabito, G. Genovese, Absorption spectra and photovoltaic characterization of chlorophyllins as sensitizers for dye sensitized solar cells. Spectrochim. Acta A 117, 702–706 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    D.V. Surya Prakash, N. Sree Satya, M. Vangalapati, Purification of chebilinic acid from Terminalia chebula species by column chromatography. J. Chem. Biol. Phys. Sci. A Chem. Sci. 2, 1753–1758 (2012)Google Scholar
  16. 16.
    S. Ananth, P. Vivek, T. Arumanayagam, P. Murugakoothan, Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells. Spectrochim. Acta A 128, 420–426 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    B. Li, X. Wang, M. Yan, L. Li, Preparation and characterization of nano-TiO2 powder. Mater. Chem. Phys. 78, 184–188 (2002)CrossRefGoogle Scholar
  18. 18.
    N. Mir, M. Salavati-Niasari, Photovoltaic properties of corresponding dye sensitized solar cells: effect of active sites of growth controller on TiO2 nanostructures. Sol. Energy 86, 3397–3404 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    C. Kormann, D.W. Bahnemann, M.R. Hoffmann, Preparation and characterization of quantum-size titanium dioxide. J. Phys. Chem. 92, 5196–5201 (1988)CrossRefGoogle Scholar
  20. 20.
    K. Madhusudan Reddy, S.V. Manorama, R. Reddy, Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78, 239–245 (2002)CrossRefGoogle Scholar
  21. 21.
    E.M. Abdou, H.S. Hafez, E. Bakir, M.S.A. Abdel-Mottaleb, Spectrochim. Acta A 115, 202–207 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    P.D. Cozzoli, A. Kornowski, H. Weller, Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J. Am. Chem. Soc. 125, 14539–21448 (2003)CrossRefGoogle Scholar
  23. 23.
    R.J. Gonzalez, R. Zallen, Infrared reflectivity and lattice fundamentals in anatase TiO2. Phys. Rev. B 55, 7014–7017 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    K. Murugajothi, J. Jeyakodi Moses, A study on the characteristic improvement of property of Terminalia chebula on cotton fabric. Orient. J. Chem. 24, 903–910 (2008)Google Scholar
  25. 25.
    G. Krithiga, P. Jena, P. Selvamani, T.P. Sastry, In vitro study on biomineralization of biphasic calcium phosphate biocomposite crosslinked with hydrolysable tannins of Terminalia chebula. Bull. Mater. Sci. 34, 589–594 (2011)CrossRefGoogle Scholar
  26. 26.
    G. Calogero, G. Di Marco, Red silicon orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 92, 1341–1346 (2008)CrossRefGoogle Scholar
  27. 27.
    M. Graetzel, Perspectives for dye-sensitized nano crystalline solar cells. Prog. Photovolt. Prog. Photovolt. Res. Appl. 8, 171–185 (2000)CrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2019

Authors and Affiliations

  • M. Rekha
    • 1
    • 2
  • M. Kowsalya
    • 1
  • S. Ananth
    • 3
  • P. Vivek
    • 4
    Email author
  • RO. MU. Jauhar
    • 5
  1. 1.School of Electrical EngineeringVIT UniversityVelloreIndia
  2. 2.Department of Electrical and Electronics EngineeringChrist College of Engineering and TechnologyPuducherryIndia
  3. 3.Department of Physics, KPR Institute of Engineering and TechnologyCoimbatoreIndia
  4. 4.Department of Physics, Sri Sankara Arts and Science College (Autonomous)Enathur, KancheepuramIndia
  5. 5.Division of Physics, School of Advanced SciencesVellore Institute of TechnologyChennaiIndia

Personalised recommendations