Journal of Optics

, Volume 48, Issue 1, pp 81–86 | Cite as

Cadmium telluride thin-film response for a laser beam illumination

  • Andra Naresh Kumar ReddyEmail author
  • Svetlana Nikolaevna Khonina
Research Article


The proposed optical system utilizes a 3 mm diameter Nd:YAG tunable laser which passes through the CdTe thin-film disk plate. Originating laser patterns are detected using CMOS camera, and the resolution of the laser pattern is analyzed with the help of well-defined quality criterion, the Full Width Half Maxima (FWHM). The differences between the responses of the system with and without the thin-film plate are compared. Finally, the optical output of the thin film for different visible wavelengths is found to be interesting to establish its field-controlling nature. The beam manipulation characteristics of the semiconducting element are determined, validating this element suitability for material processing.


CdTe thin films Spot size FWHM Diffraction 



The corresponding author is thankful to Prof. Nir Davidson and Prof. Asher A. Friesem (Department of Physics of Complex Systems, Weizmann Institute of Science, Israel) for fruitful discussions. This work was supported by the Israel Science Foundation (ISF), Russian Foundation for Basic Research (RFBR) (Grant Nos: 16-29-11698, 16-29-11744) and the Ministry of Science and Education, Russia, within the state assignment FSRC “Crystallography and Photonics” RAS.


  1. 1.
    N. Goffin, J. Tyrer, E. Woolley, Complex beam profiles for laser annealing of thin film photovoltaics. J. Laser Appl. 30, 042006 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    F. Lisco, N. Goffin, A. Abbas, G. Claudio, E. Wolley, J. Tyrer, J. Walls, in 43rd IEEE Photovoltaics Specialists Conference, Portland, OR, 5–10 June 2016Google Scholar
  3. 3.
    M. Martinez-Corral, M.T. Caballero, E.H.K. Stelzer, J. Swoger, Tailoring the axial shape of the point spread function using Toraldo concept. Opt. Exp. 10(1), 98 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    N. Reza, L.N. Hazra, Toraldo filters with concentric unequal annuli of fixed phase by evolutionary programming. J. Opt. Soc. Am. A 30(2), 189 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    L.N. Hazra, A new class of optimum amplitude filters. Opt. Commun. 21(2), 232–236 (1977)ADSCrossRefGoogle Scholar
  6. 6.
    D. Triantafyllids, J.R. Bernstein, L. Li, F.H. Stott, Dual laser beam modification of high alumina ceramics. J. Laser Appl. 15, 49–54 (2003)CrossRefGoogle Scholar
  7. 7.
    D. Lee, J. Mazumder, Effects of laser beam spatial distribution on laser-material interaction. J. Laser Appl. 28, 032003 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    M.M. Shanei, M. Hashemi, D. Fathi, C.J. Zapata-Rodriguez, Dielectric metalenses with engineered point spread function. Appl. Opt. 56(32), 8917–8923 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Ali Forouzmand, Hossein Mosallaei, All-dielectric C-shaped nanoantennas for light manipulation: tailoring both magnetic and electric resonances to the desire. Adv. Opt. Mater 5, 1700147 (2017)CrossRefGoogle Scholar
  10. 10.
    J. Tyrer, S. Noden, Diffractive optical elements for manipulation of high power CO 2 laser radiation—a feasibility study in high-power lasers: applications and emerging applications, vol. 2789 (SPIE, Washington, 1996)Google Scholar
  11. 11.
    B.J. Simonds, H.J. Meadows, S. Misra, C. Ferekides, P.J. Dale, M.A. Scarpulla, Laser processing for thin film chalcogenide photovoltaics: a review and prospectus. J. Photon. Energy 5, 050999 (2015)CrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2019

Authors and Affiliations

  1. 1.Department of Physics of Complex SystemsWeizmann Institute of ScienceRehovotIsrael
  2. 2.Samara National Research UniversitySamaraRussia
  3. 3.Image Processing Systems Institute–Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of SciencesSamaraRussia

Personalised recommendations