Journal of Optics

, Volume 48, Issue 1, pp 3–17 | Cite as

Limited-angle image reconstruction based on Mumford–Shah-like model and wavelet tight frames

  • Lingli Zhang
  • Li ZengEmail author
  • Chengxiang Wang
  • Yumeng Guo
Research Article


Restricted by the scanning environment and the radiation exposure of computed tomography (CT), the obtained projection data are sometimes incomplete, which results in an ill-posed problem, such as a limited-angle image reconstruction. In such circumstance, the commonly used analytic and iterative algorithms, such as filtered back-projection and simultaneous algebraic reconstruction technique (SART), will not work well. Nowadays, a popular iterative image reconstruction algorithm (\({\hbox {SART}}+{\hbox {TV}}\)) solving the optimization model based on the minimization of total variation (TV) of the image applies to the sparse-view reconstruction problem well; it is not effective on small limited-angle reconstruction problem, especially in aspect of suppressing slope artifacts when the limited-angle projection views are severely reduced. In this work, we develop a reconstruction model based on the Mumford–Shah-like model and wavelet tight frames that applies to limited-angle CT; and the corresponding iterative method is given. Numerical experiments and quantitative analysis demonstrate that our method outperforms SART and \({\hbox {SART}}+{\hbox {TV}}\) in suppressing slope artifacts when the limited-angle projection views are severely decreased.


Computed tomography Image reconstruction Wavelet tight frames Mumford–Shah model 



This work is supported by the National Natural Science Foundation of China (61271313, 61471070) and National Instrumentation Program of China (2013YQ030629).


  1. 1.
    T.M. Buzug, Computed Tomography: From Photon Statistics to Modern Cone-Beam CT, 1st edn. (Springer, Berlin Heidelberg, 2008)Google Scholar
  2. 2.
    D.J. Brenner, E.J. Hall, Computed tomography—an increasing source of radiation exposure. New Engl. J. Med. 357, 2277–2284 (2007)CrossRefGoogle Scholar
  3. 3.
    A. Berrington de Gonzalez, M. Mahesh, K.-P. Kim, Projected cancer risks from computed tomographic scans performed in the United States in 2007. J. Vasc. Surg. 51(3), 2071–2077 (2009)Google Scholar
  4. 4.
    J. Hsieh, Adaptive streak artifact reduction in computed tomography resulting from excessive X-ray photon noise. Med. Phys. 25(11), 2139–47 (1998)CrossRefGoogle Scholar
  5. 5.
    T.F. Li, X. Li, J. Wang, J.H. Wen, H.B. Lu, Z.R. Liang, Nonlinear sinogram smoothing for low-dose X-ray CT. IEEE Trans. Nucl. Sci. 51(5), 2505–2513 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    E.Y. Sidky, C.M. Kao, X. Pan, Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. J. X-ray Sci. Technol. 14(2), 119–139 (2006)Google Scholar
  7. 7.
    E.Y. Sidky, X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 53(17), 4777–4807 (2008)CrossRefGoogle Scholar
  8. 8.
    G. Herman, R. Davidi, On image reconstruction from a small number of projections. Inverse Probl. 24(4), 45011–45028 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    H. Yu, G. Wang, A soft-threshold filtering approach for reconstruction from a limited number of projections. Phys. Med. Biol. 55(13), 3905–3916 (2010)CrossRefGoogle Scholar
  10. 10.
    Z. Chen, X. Jin, L. Li, G. Wang, A limited-angle CT reconstruction method based on anisotropic TV minimization. Phys. Med. Biol. 58(7), 2119–2141 (2013)CrossRefGoogle Scholar
  11. 11.
    X. Lu, Y. Sun, Y. Yuan, Optimization for limited angle tomography in medical image processing. Pattern Recognit. 44, 2427–2435 (2011)CrossRefzbMATHGoogle Scholar
  12. 12.
    M. Cho, H. Kim, H. Youn, S. Kim, A feasibility study of digital tomosynthesis for volumetric dental imaging. J. Instrum. 7(3), 55–61 (2012)CrossRefGoogle Scholar
  13. 13.
    G. Bachar, J. Siewerdsen, M. Daly, D. Jaffray, J. Irish, Image quality and localization accuracy in C-arm tomosynthesis-guided head and neck surgery. Med. Phys. 34(12), 4664–4677 (2007)CrossRefGoogle Scholar
  14. 14.
    A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1987)zbMATHGoogle Scholar
  15. 15.
    A.H. Andersen, A.C. Kak, Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm. Ultrason. Imaging 6(1), 81–94 (1984)CrossRefGoogle Scholar
  16. 16.
    M. Jiang, G. Wang, Convergence of the simultaneous algebraic reconstruction technique (SART). IEEE Trans. Image Process. 12(8), 957–61 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    H. Yu, G. Wang, Compressed sensing based interior tomography. Phys. Med. Biol. 54(9), 2791–2805 (2009)CrossRefGoogle Scholar
  18. 18.
    L. Ritschl, F. Bergner, C. Fleischmann et al., Improved total variation-based CT image reconstruction applied to clinical data. Phys. Med. Biol. 56(6), 1545–61 (2011)CrossRefGoogle Scholar
  19. 19.
    J. Liu, H. Ding, S. Molloi et al., TICMR: total image constrained material reconstruction via nonlocal total variation regularization for spectral CT. IEEE Trans. Med. Imaging 35, 2578–2586 (2016)CrossRefGoogle Scholar
  20. 20.
    X. Cai, R. Chan, T. Zeng, A two-stage image segmentation method using a convex variant of the Mumford–Shah model and thresholding. SIAM J. Imaging Sci. 6(1), 368–390 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    B. Han, On dual wavelet tight frames. Appl. Comput. Harmon. Anal. 4, 380–413 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    A. Ron, Z. Shen, Affine systems in L 2( R d) II: dual systems. J. Fourier Anal. Appl. 3, 617–637 (1997)MathSciNetCrossRefGoogle Scholar
  23. 23.
    D. Mumford, J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 1413–1457 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    J. Bolte, S. Sabach, M. Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146, 459–494 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    T. Blumensath, M.E. Davies, Iterative thresholding for sparse approximations. J. Fourier Anal. Appl. 14, 629–654 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    T. Blumensath, M.E. Davies, Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27, 265–274 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    T. Blumensath, Accelerated iterative hard thresholding. Signal Process. 92, 752–756 (2012)CrossRefGoogle Scholar
  29. 29.
    W. Wu, Y. Zhang, Q. Wang, F. Liu, P. Chen, H. Yu, Low-dose spectral CT reconstruction using image gradient \(\ell _{0}\) norm and tensor dictionary. Appl. Math. Model. 63, 538–557 (2018)MathSciNetCrossRefGoogle Scholar
  30. 30.
    B. Zhao, H. Gao, H. Ding, S. Molloi, Tight-frame based iterative image reconstruction for spectral breast CT. Med. Phys. 40(3), 031905 (2013)CrossRefGoogle Scholar
  31. 31.
    Y. Zhang, B. Dong, Z. Lu, \(\ell _{0}\) minimization for wavelet frame based image restoration. Math. Comput. 82, 995–1015 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    J.F. Cai, S. Osher, Z. Shen, Split Bregman methods and frame based image restoration. Multiscale Model. Simul. 8, 337–369 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    B. He, A class of projection and contraction methods for monotone variational inequalities. Appl. Math. Optim. 35, 69–76 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    B. He, M.H. Xu, A general framework of contraction methods for monotone variational inequalities. Pac. J. Optim. 4, 195–212 (2008)MathSciNetzbMATHGoogle Scholar
  35. 35.
    M. Storath, A. Weinmann, J. Frikel, M. Unser, Joint image reconstruction and segmentation using the Potts model. Inverse Probl. 31, 25003–25031 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    W.P. Segars, D.S. Lalush, B.M. Tsui, A realistic spline-based dynamic heart phantom. IEEE Trans. Nucl. Sci. 46, 503–506 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    K. Hämäläinen, L. Harhanen, A. Kallonen, A. Kujanpää, E. Niemi, Siltanen S, Tomographic X-ray data of a walnut. (2015) arXiv:1502.04064

Copyright information

© The Optical Society of India 2018

Authors and Affiliations

  • Lingli Zhang
    • 1
    • 2
  • Li Zeng
    • 1
    • 2
    Email author
  • Chengxiang Wang
    • 3
  • Yumeng Guo
    • 1
    • 2
  1. 1.College of Mathematics and StatisticsChongqing UniversityChongqingChina
  2. 2.Engineering Research Center of Industrial Computed Tomography Nondestructive Testing of the Education Ministry of ChinaChongqing UniversityChongqingChina
  3. 3.School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations