Advertisement

Investigation on terahertz generation from zinc-blende crystal waveguide at polariton resonance

  • Zhongyang Li
  • Mengtao Wang
  • Silei Wang
  • Pibin Bing
  • Sheng Yuan
Research Article
  • 15 Downloads

Abstract

Terahertz (THz) wave generation from zinc-blende crystal waveguide, such as GaAs, InP, ZnTe and CdTe, at polariton resonance region (PRR) with a transverse pumping geometry is investigated. It is shown that by using grating vector of periodically inverted crystal, THz wave can be efficiently generated by difference frequency generation (DFG) with a transverse pumping geometry. Parametric gain coefficients in the low-loss limit and absorption coefficients of THz wave during DFG process in the vicinity of PRR are analyzed. The frequency tuning characteristics of THz wave via varying wavelength of difference frequency waves and poling period of periodically inverted crystal are numerically analyzed.

Keywords

Terahertz wave Difference frequency generation Zinc-blende crystal Transverse pumping geometry 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61201101, 61601183 and 61205003); the Natural Science Foundation of Henan Province (162300410190); the Program for Innovative Talents (in Science and Technology) in University of Henan Province (18HASTIT023); the Young Backbone Teachers in University of Henan Province (2014GGJS-065) and the Program for Innovative Research Team (in Science and Technology) in University of Henan Province (16IRTSTHN017).

References

  1. 1.
    L. Ho, M. Pepper, P. Taday, Terahertz spectroscopy: signatures and fingerprints. Nat. Photon. 2, 541–543 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, THz imaging and sensing for security applications-explosives, weapons, and drugs. Semicond. Sci. Technol. 20, S266–S280 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    J.L. Liu, J.M. Dai, S.L. Chin, X.C. Zhang, Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nat. Photon. 4, 627–631 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    T. Kleine-Ostmann, T. Nagatsuma, A review on terahertz communications research. J. Infrared Milli. Terahz. Waves 32, 143–171 (2011)CrossRefGoogle Scholar
  5. 5.
    W. Shi, Y.J. Ding, A monochromatic and high-power THz source tunable in the ranges of 2.7–38.4 μm and 58.2–3540 μm for variety of potential applications. Appl. Phys. Lett. 84, 1635–1637 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    P. Zhao, S. Ragam, Y.J. Ding, I.B. Zotova, X. Mu, H. Lee, S.K. Meissner, H. Meissner, Singly resonant optical parametric oscillator based on adhesive-free-bonded periodically inverted KTiOPO4 plates: terahertz generation by mixing a pair of idler waves. Opt. Lett. 37, 1283–1285 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Jiang, D. Li, Y.J. Ding, I.B. Zotova, Terahertz generation based on parametric conversion: from saturation of conversion efficiency to back conversion. Opt. Lett. 36, 1608–1610 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    H. Minamide, S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature. J. Infrared Milli. Terahz. Waves 35, 25–37 (2014)CrossRefGoogle Scholar
  9. 9.
    T. Akiba, Y. Akimoto, K. Suizu, K. Miyamoto, T. Omatsu, Evaluation of polarized terahertz waves generated by Cherenkov phase matching. Appl. Opt. 53, 1518–1522 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    T. Tanabe, K. Suto, J. Nishizawa, K. Saito, T. Kimura, Tunable terahertz wave generation in the 3- and 7-THz region from GaP. Appl. Phys. Lett. 83, 237–239 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Z. Li, P. Bing, S. Yuan, D. Xu, J. Yao, Investigation on terahertz generation at polariton resonance of MgO:LiNbO3 by difference frequency generation. Opt. Laser Technol. 69, 13–16 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Y.J. Ding, Efficient generation of high-frequency terahertz waves from highly lossy second-order nonlinear medium at polariton resonance under transverse-pumping geometry. Opt. Lett. 35, 262–264 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Y.H. Avetisyan, Terahertz-wave surface-emitted difference-frequency generation without quasi-phase-matching technique. Opt. Lett. 35, 2508–2510 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    R. Chen, G. Sun, G. Xu, Y.J. Ding, I.B. Zotova, Generation of high-frequency terahertz waves in periodically poled LiNbO3 based on backward parametric interaction. Appl. Phys. Lett. 101, 111101 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    R. Sowade, I. Breunig, C. Tulea, K. Buse, Nonlinear coefficient and temperature dependence of the refractive index of lithium niobate crystals in the terahertz regime. Appl. Phys. B 99, 63–66 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    I. Shoji, T. Kondo, R. Ito, Second-order nonlinear susceptibilities of various dielectric and semiconductor materials. Opt. Quantum Electron. 34, 797–833 (2002)CrossRefGoogle Scholar
  17. 17.
    C. Flytzanis, J. Ducuing, Second-order optical susceptibilities of III-V semiconductors. Phys. Rev. 178, 1218–1228 (1969)ADSCrossRefGoogle Scholar
  18. 18.
    K.L. Vodopyanov, Optical THz-wave generation with periodically-inverted GaAs. Laser Photon. Rev. 2, 11–25 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    C.B. Ebert, L.A. Eyres, M.M. Fejer, J.S. Harris, MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy. J. Cryst. Growth 201(202), 187–193 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, GaAs/Ge/GaAs sublattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices. Jpn. J. Appl. Phys. 38, L508–L511 (1999)CrossRefGoogle Scholar
  21. 21.
    S.S. Sussman, Tunable Light Scattering from Transverse Optical Modes in Lithium Niobate. Stanford University, Microwave Laboratory Report No. 1851 (1970)Google Scholar
  22. 22.
    C.C. Shih, A. Yariv, Quantitative calculation of electro-optic coefficients of diatomic crystals. Phys. Rev. Lett. 44, 281–284 (1980)ADSCrossRefGoogle Scholar
  23. 23.
    I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, R. Ito, Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B 14, 2268–2294 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    K. Saito, T. Tanabe, Y. Oyama, Widely tunable surface-emitted monochromatic terahertz-wave generation beyond the Reststrahlen band. Opt. Communications 335, 99–101 (2015)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2018

Authors and Affiliations

  1. 1.College of Electric PowerNorth China University of Water Resources and Electric PowerZhengzhouChina

Personalised recommendations