Journal of Optics

, Volume 47, Issue 4, pp 456–459 | Cite as

The absorption properties in heterostructures with the hexagonal boron nitride crystals in the mid-infrared frequency range

  • Yong-qiang KangEmail author
Research Article


The absorption properties in heterostructure with the hexagonal boron nitride crystal are investigated theoretically. It is shown to absorb roughly 90% in reststrahlen upper-frequency band at normal incidence. However, the maximum absorption is only 30% in reststrahlen lower-frequency band. The magnetic fields are found to be strongly localized between the interface of the dielectric and hBN crystals with evanescent light wave in the both reststrahlen bands. The effects of the thickness of dielectric on the absorption are also specifically explored.


Absorption Infrared Heterostructure 



This research was financially supported by the National Science Foundation (Grant No. 61307121) and Launching Scientific Research Funds for Doctors (Grant No. 2014-B-04) and Shanxi Provincial Science Foundation (Grant No. 201601D021029), Science and Technology Project of Datong City (Nos. 2015018, 2017131).


  1. 1.
    Carsten Rockstuhl, Falk Lederer, Perfect absorbers on curved surfaces and their potential applications. Opt. Express 20, 18370–18376 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    G.K. Lim, Z.L. Chen, J. Clark et al., Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nat. Photonics 5(9), 554–560 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    R. Ning, S. Liu, H. Zhang et al., A wide-angle broadband absorber in graphene-based hyperbolic metamaterials. Eur. Phys. J. Appl. Phys. 68, 20401 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    T.V. Teperik, F.J.G.D. Abajo, A.G. Borisov, M. Abdelsalam, P.N. Bartlett, Y. Sugawara et al., Omnidirectional absorption in nanostructured metal surfaces. Nat. Photonics 2(5), 299–301 (2008)CrossRefGoogle Scholar
  5. 5.
    N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10(7), 2342 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang et al., Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt. Express 19(18), 17413–17420 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Xiang, X. Dai, J. Guo et al., Critical coupling with graphene-based hyperbolic metamaterials. Sci. Rep. 4, 5483 (2014)CrossRefGoogle Scholar
  8. 8.
    S. Law, D.C. Adams, A.M. Taylor, D. Wasserman, Mid-infrared designer metals. Opt. Express 20(11), 12155 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    S. Dai, Z. Fei, Q. Ma, A.S. Rodin, M. Wagner, A.S. Mcleod et al., Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343(6175), 1125 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    J. Wu, J. Guo, L. Jiang, S. Wen, X. Dai, Y. Xiang, Tunable perfect absorption at infrared frequencies by a graphene-hbn hyper crystal. Opt. Express 24(15), 17103 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    S.J. Xu, Y.F. Luo, W. Zhong, Z.H. Xiao, X.Y. Liu, Investigation of hexagonal boron nitride for application as counter electrode in dye-sensitized solar cells. Adv. Mater. Res. 515, 242–245 (2012)Google Scholar
  12. 12.
    A. Kumar, T. Low, K.H. Fung, P. Avouris, N.X. Fang, Tunable light-matter interaction and the role of hyperbolicity in graphene-hbn system. Nano Lett. 15(5), 3172 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    R. Ning, S. Liu, H. Zhang, B. Bian, X. Kong, Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range. Physica B 457, 144–148 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang et al., Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range. J. Appl. Phys. 119(20), 74–846 (2016)CrossRefGoogle Scholar
  15. 15.
    Y. Kang, C. Zhang, T. Mu, P. Gao, Resonant modes and inter-well coupling in photonic double quantum well structures with single-negative materials. Opt. Commun. 285(24), 4821–4824 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Yongqiang Kang, Chunmin Zhang, Peng Gao, Wenyi Ren, Electromagnetic resonance tunneling in a single-negative sandwich structure. J. Mod. Opt. 60(13), 1021–1026 (2013)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2018

Authors and Affiliations

  1. 1.Institute of Solid State Physics, Shanxi Datong UniversityDatongChina

Personalised recommendations