Journal of Optics

, Volume 47, Issue 4, pp 489–495 | Cite as

Tuning full photonic band gap with plasma frequency in two-dimensional photonic crystals composed of anisotropic dielectric rods in plasma background

  • A. H. Ramezani
  • T. Fathollahi KhalkhaliEmail author
  • M. R. Moghadam
Research Article


In this study, we analyze full photonic band gap formation and properties of two-dimensional photonic crystals with square lattice, composed of anisotropic tellurium rods with different geometric shapes in a plasma background. Using the finite-difference time-domain method, we discuss the tunability of the full photonic band gap width as a function of the plasma frequency for different values of tellurium rod’s parameters. The calculated results show that our proposed structures represent full photonic band gaps with considerable width, which are dependent on plasma frequency.


Photonic band gap material Plasma photonic crystals Anisotropic tellurium material Finite-difference time-domain method 


  1. 1.
    O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, I. Kim, Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999)CrossRefGoogle Scholar
  2. 2.
    S. Fan, P.R. Villeneuve, J.D. Joannopoulos, E.F. Schubert, High extraction efficiency of spontaneous emission from slabs of photonic crystals. Phys. Rev. Lett. 78, 3294–3297 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    S.Y. Lin, E. Chow, V. Hietala, P.R. Villeneuve, J.D. Joannopoulos, Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal. Science 282, 274–276 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    C.M. Anderson, K.P. Giapis, Larger two-dimensional photonic band gaps. Phys. Rev. Lett. 77, 2949–2952 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, T. Takemori, Confined band gap in an air-bridge type of two-dimensional AlGaAs photonic crystal. Phys. Rev. Lett. 86, 2289–2292 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    M. Qiu, B. Jaskorzynska, Design of a channel drop filter in a two-dimensional triangular photonic crystal. Appl. Phys. Lett. 83, 1074–1076 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    M. Kafesaki, M. Agio, C.M. Soukoulis, Waveguides in finite-height two-dimensional photonic crystals. J. Opt. Soc. Am. B 19, 2232–2240 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    M. Florescu, S. Torquato, Paul J. Steinhardt, Complete band gaps in two-dimensional photonic quasicrystals. Phys. Rev. B 80, 155112–155117 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    C.M. Anderson, K.P. Giapis, Symmetry reduction in group 4 mm photonic crystals. Phys. Rev. B. 56, 7313–7320 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    N. Malkova, S. Kim, T. DiLazaro, V. Gopalan, Symmetrical analysis of complex two-dimensional hexagonal photonic crystals. Phys. Rev. B. 67, 125203–125209 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Z.Y. Li, B.Y. Gu, G.Z. Yang, large absolute band gap in 2D anisotropic photonic crystals. Phys. Rev. Lett. 81, 2574–2577 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    Z.Y. Li, J. Wang, B.Y. Gu, Creation of partial band gaps in anisotropic photonic-band-gap structure. Phys. Rev. B. 58, 3721–3729 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    B. Rezaei, T. Fathollahi Khalkhali, M. Kalafi, Tunable out-of-plane band gap of two-dimensional anisotropic photonic crystals infiltrated with liquid crystals. Opt. Commun. 284, 813–817 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    H.Y. Zhang, Y.P. Zhang, W.H. Liu, Y.Q. Wang, J.G. Yang, Zero-averaged refractive-index gaps extension by using photonic heterostructures containing negative-index materials. Appl. Phys. B 96, 67–70 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    T. Fathollahi Khalkhali, A. Bananej, Tunable complete photonic band gap in anisotropic photonic crystal slabs with non-circular air holes using liquid crystals. Opt. Commun 369, 79–83 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    H.F. Zhang, S.B. Liu, X.K. Kong, B.R. Bian, Y.N. Cuo, Dispersion properties of two-dimensional plasma photonic crystals with periodically external magnetic field. Solid State Commun. 152, 1221–1229 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    H.F. Zhang, S.B. Liu, X.K. Kong, B.R. Bian, Y. Dai, Omnidirectional photonic band gaps enlarged by Fibonacci quasi-periodic one-dimensional ternary superconductor photonic crystals. Solid State Commun. 152, 2113–2119 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    M. Kamp, T. Happ, S. Mahnkopf, G. Duan, S. Anand, A. Forchel, Semiconductor photonic crystals for optoelectronics. Phys. E 21, 802–808 (2004)CrossRefGoogle Scholar
  19. 19.
    A. Moroz, Three-dimensional complete photonic-band-gap structures in the visible. Phys. Rev. Lett. 83, 5274–5277 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    H. Hojo, A. Mase, Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals. Plasma Fusion Res. 80, 89–90 (2004)CrossRefGoogle Scholar
  21. 21.
    O. Sakai, K. Tachibana, Properties of electromagnetic wave propagation emerging in 2-D periodic plasma structures. IEEE Trans. Plasma Sci. 35, 1267–1273 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    W. Fan, X. Zhang, L. Dong, Two-dimensional plasma photonic crystals in dielectric barrier discharge. Phys. Plasmas 17, 113501–113507 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    X.K. Kong, S.B. Liu, H.F. Zhang, L. Zhou, C.Z. Li, Band structure calculations for two-dimensional plasma photonic crystals in honeycomb lattice arrangement. J. Lightwave Technol. 29, 2947–2953 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    B. Wang, M.A. Cappelli, A plasma photonic crystal bandgap device. Appl. Phys. Lett. 108, 161101–161104 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    H.F. Zhang, S.B. Liu, X.K. Kong, L. Zou, C.Z. Li, B.R. Bian, Comment on “Photonic bands in two-dimensional microplasma array. I. Theoretical derivation of band structures of electromagnetic waves” [J. Appl. Phys. 101, 073304 (2007)]. J. Appl. Phys. 110, 026104 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    X. Kong, S. Liu, H. Zhang, C. Li, B. Bian, Omnidirectional photonic band gap of one-dimensional ternary plasma photonic crystals. J. Opt. 13(3), 035101–035105 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    L. Qi, Photonic band structures of two-dimensional magnetized plasma photonic crystals. J. Appl. Phys. 111, 073301–073308 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    C.L. Liu, X.K. Kong, S.B. Liu, Band gap extension in honeycomb lattice two-dimensional plasma photonic crystals in the presence of dissipation. Optik 124, 4989–4993 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    T. Fu, Z. Yang, Z. Shi, F. Lan, D. Li, X. Gao, Dispersion properties of a 2D magnetized plasma metallic photonic crystal. Phys. Plasmas 20, 023109 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    L. Shiveshwari, S.K. Awasthi, Transmission properties of one-dimensional ternary plasma photonic crystals. Phys. Plasmas 22, 022105–022109 (2015)CrossRefGoogle Scholar
  31. 31.
    T. Fathollahi Khalkhali, A. Bananej, Effect of shape of scatterers and plasma frequency on the complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals. Phys. Lett. A 380, 4092–4099 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    T. Fathollahi Khalkhali, A. Bananej, Full photonic band gap properties of plasma photonic crystals with triangular structure. J. Mod. Opt. 64, 830–835 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    T. Fathollahi Khalkhali, B. Rezaei, A.H. Ramezani, Tuning of full band gap in anisotropic photonic crystal slabs using a liquid crystal. Opt. Commun. 285, 5254–5258 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    T. Fathollahi Khalkhali, A. Bananej, Evolution of complete photonic band gap in anisotropic photonic quasicrystals using liquid crystals. J. Mod. Opt. 63, 2265–2270 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    H.F. Zhanga, S.B. Liua, X.K. Konga, C. Chena, B.R. Biana, The characteristics of photonic band gaps for three-dimensional unmagnetized dielectric plasma photonic crystals with simple-cubic lattice. Opt. Commun. 288, 82–90 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, MEEP: a flexible free-software package for EM simulations by the FDTD method. Comput. Phys. Commun. 181, 687–702 (2010)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2018

Authors and Affiliations

  1. 1.Department of Physics, West Tehran BranchIslamic Azad UniversityTehranIran
  2. 2.Photonics and Quantum Technologies Research SchoolNuclear Science and Technology Research Institute (NSTRI)TehranIran

Personalised recommendations