Journal of Optics

, Volume 47, Issue 4, pp 475–480 | Cite as

Current sensing by magnetic shielding of high birefringent fibre

  • Devasis HaldarEmail author
Research Article


Power coupling due to Faraday rotation effect in high birefringent optical fibre is a function of periodicity of field spacing. This idea has been explored to design a new current sensor which is geometrically highly versatile and does not require special design of busbars. The approach used is one of periodic magnetic shielding. This paper provides a description about such a sensor. Formation of such a sensor in practical environment is also stated. For comparison of efficacy of shielding, the same sensor is tried over a simple prototype busbar. In addition, a detailed theoretical analysis for temperature dependence of such a sensor is also given.


High birefringent fibre Solenoid Ferrite beads Busbar Curie temperatute 


  1. 1.
    A.J. Rogers, Optical measurement of current and voltage in power systems. IEEE J. Electr. Power Appl. 2, 120 (1979)CrossRefGoogle Scholar
  2. 2.
    W. Chu, D. McStay, A.J. Rogers, Current sensing by mode coupling in fibre via the Faraday effect. Electron. Lett. 27(3), 207–208 (1991)CrossRefGoogle Scholar
  3. 3.
    W. Chu, D. McStay, A.J. Rogers, Measurement of Electric Current using Highly Birefringent Optical Fibre, Optical Fibre Sensor 90, Sydney Australia, Dec 1990Google Scholar
  4. 4.
    A.J. Rogers, Novel electrooptic and magnetooptic properties of monomode optical fibres, in SPIE Conference (1989)Google Scholar
  5. 5.
    R.H. Stolen, E.H. Turner, Faraday rotation in highly birefringent optical fibres. Appl. Opt. 19(6), 842–845 (1980)ADSCrossRefGoogle Scholar
  6. 6.
    D. Marcuse, The coupling of degenerate modes in two parallel dielectric waveguides. Bell Syst. Tech. J. 50, 1791–1817 (1971)CrossRefGoogle Scholar
  7. 7.
    P. Baues, Ïntegriert optische Richtkoppler, Elektronik-Anz. (1977), pp. 19–22Google Scholar
  8. 8.
    W.H. Louisell, Coupled mode and parametric electronics (Wiley, New York, 1960), pp. 1–34. (and references therein) Google Scholar
  9. 9.
    W. Chu, D. Haldar, D. McStay, A.J. Rogers, Interference of The Faraday coupled signal with the residual mode component in a highly-birefringent optical-fibre current sensor, in 8 th Optical Fiber Sensor Conference, Monterey, CA, 1992Google Scholar
  10. 10.
    C.G. Someda, G. Stegeman, Anisotropic and nonlinear optical waveguides (Elsevier Science Publishers B.V., Amsterdam, 1992). ISBN 0 444 884890Google Scholar
  11. 11.
    G.I. Chandler, F.C. Jhoda, Current measurement by faraday rotation in single mode optical fibres, in 5 th Tropical Conference on High Temperature Plasma Diagonistics, Tahoe City, California, 1984Google Scholar
  12. 12.
    N. Grote, H. Veghans, Fibre optic communication devices (Springer, Berlin, 2001). ISBN 978-3-642-63124-5CrossRefGoogle Scholar
  13. 13.
    B.D. Gupta, Fiber Optic Sensors, Principles and Applications (New India Publishing Agency, New Delhi, 2006). ISBN 81-894 22-11-1Google Scholar
  14. 14.
    S. Ramo, J.R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 2008)Google Scholar
  15. 15.
    J. Smit, H.P.J. Wijn, Ferrites (Philips’ Technical Library, 1959 edition)Google Scholar
  16. 16.
    R.F. Soohoo, Theory and Application of Ferrites (Prentice Hall International, Inc., London, 1960)Google Scholar
  17. 17.
    R.A. Waldron, Ferrites: An introduction for Microwave Engineers (D.Van Nostrand Company Ltd., London, 1962)Google Scholar

Copyright information

© The Optical Society of India 2018

Authors and Affiliations

  1. 1.SRM UniversityModi NagarIndia

Personalised recommendations