Advertisement

Journal of Optics

, Volume 47, Issue 4, pp 547–552 | Cite as

Nondestructive evaluation of residual stress via digital holographic photoelasticity

  • Fan Wang
  • Ya-ping Zhang
  • Hui Wang
  • Wei Xu
  • Yong-an Zhang
  • Chong-guang Li
Research Article
  • 174 Downloads

Abstract

The nondestructive evaluation of residual stress forms a very important aspect of structural engineering. In this context, as per the theory underlying digital holographic photoelasticity, the residual stress field in a transparency can be efficiently and nondestructively evaluated with high accuracy by varying the polarization direction of the reference light beam. In this study, we use a setup to experimentally verify the above mentioned hypothesis. We first record digital holograms before and after heating optically transparent specimens at four different corresponding positions of the reference light polarization. We next solve the four resulting light intensity equations after digital image processing of the four digital holograms to obtain the residual stress. A comparison of our experimental results with those of the drilling method (the conventional approach to determine residual stress) indicates that our digital holographic photoelasticity method can be suitably applied to the nondestructive evaluation of residual stress in transparencies.

Keywords

Digital holographic method Photo-elasticity method Nondestructive testing Residual stress Transparency 

Notes

Acknowledgements

Financial support for this study was provided by the National Natural Science Foundation of China (Grant No. : 11762009; 61565010)

References

  1. 1.
    M. Nisida, H. Saito, A new interferometric method of two dimensional stress analysis. Exp. Mech. 4(12), 366–376 (1964)CrossRefGoogle Scholar
  2. 2.
    M.E. Fourney, Application of holography to photoelasticity. Exp. Mech. 8(1), 33–38 (1968)CrossRefGoogle Scholar
  3. 3.
    M.E. Fourney, K.V. Mate, Further applications of holograph to photoelasticity. Exp. Mech. 10(5), 177–186 (1970)CrossRefGoogle Scholar
  4. 4.
    D.C. Holloway, R.H. Johnson, Advancements in holographic photoelasticity. Exp. Mech. 11(2), 57–63 (1971)CrossRefGoogle Scholar
  5. 5.
    H. Kubo, R. Nagata, Holographic photoelasticity with depolarized object wave. Jpn. J. Appl. Phys. 15(4), 641–644 (1976)ADSCrossRefGoogle Scholar
  6. 6.
    H. Uozato, R. Nagata, Holographic photoelasticity by using dual hologram method. Jpn. J. Appl. Phys. 16(1), 95–100 (1977)ADSCrossRefGoogle Scholar
  7. 7.
    M. Yokota, Y. Terui, I. Yamaguchi, Polarization analysis with digital holography by use of polarization modulation for single reference beam. Opt. Eng. 46(5), 055801 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    A. Magnier, B. Scholtes, T. Niendorf, Analysis of residual stress profiles in plastic materials using the hole drilling method. Polym. Test. 59, 29–37 (2005)CrossRefGoogle Scholar
  9. 9.
    K.-F. Wang, M.-H. Gao, K.-Y. Zhou, Modern Optical Measurement Mechanics Techniques (Harbin Institute of Technology Press, Harbin, 2009)Google Scholar
  10. 10.
    K. Thomas, Handbook of Holographic Interferometry Optical and Digital Methods (Godin Lyttle Press, Wiley-VCH, weinheim, 2004), pp. 81–93Google Scholar
  11. 11.
    L.-Y. Zhong, Y.-M. Zhang, X.-X. Lv, The analysis of synthetic aperture digital hologram and multiple reference optical synthetic aperture digital holography. Acta Photonica Sin. 33(11), 1343–1347 (2004)Google Scholar
  12. 12.
    Z.-K. Lei, D.-Z. Yun, Y.-L. Kang, L.-T. Shao, A review of digital photo-elasticity. J. Exp. Mech. 19(4), 393–402 (2004)Google Scholar
  13. 13.
    H.-S. Wang, Research progress of digital holography. J. Shanghai Univ. Electr. Power 24(1), 87–89 (2008)Google Scholar
  14. 14.
    J-C. Li, W. Xu, Y-P. Zhang, The method of digital holographic photo-elasticity of rotating reference light polarization direction to detect two-dimensional stress field. A patent for invention. Application number: 200910094280.6. Application date: 2009.03.31 (in Chinese)Google Scholar
  15. 15.
    R.S. Sirohi, Optical Methods of Measurement: Whole-field Techniques (Taylor and Francis/CRC Press, Boca Raton, 2009)CrossRefGoogle Scholar
  16. 16.
    C. Narayanamurthy, G. Pedrini, W. Osten, Digital holographic photoelasticity. Appl. Opt. 56(3), F213–F217 (2017)CrossRefGoogle Scholar
  17. 17.
    M.J. Pechersky, R.F. Miller, C.S. Vikram, Residual stress measurements with laser speckle correlation interferometry and local heat treating. Opt. Eng. 34(10), 2964–2971 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    C.S. Vikram, M.J. Pechersky, C. Feng, D. Engelhaupt, Residual-stress analysis by local laser heating and speckle correlation interferometry. Exp. Tech. 20(6), 27–30 (1996)CrossRefGoogle Scholar
  19. 19.
    T. Lyubenova, E. Stoykova, B. Ivanov, W. Van Paepegem, A. Degrieck, V. Sainov, Full-field stress analysis by holographic phase-stepping implementation of the photo elastic-coating method. Phys. Scr. T149, 014022–014027 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    K. Mayssa, P. Christophe, G. Mohamed, P. Pascal, Evaluation of inter laminar shear of laminate by 3D digital holography. Opt. Lasers Eng. 92, 57–62 (2017)CrossRefGoogle Scholar
  21. 21.
    J.-F. Zhao, S. Yu, Effects of residual stress on the hydro-elastic vibration of circular diaphragm. World J. Mech. 2(6), 361–368 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    H.-L. Hou, X. Zhu, R.-Q. Liu, Research on measuring strain relief parameters of welding residual stress of steel 921A by blind-hole. Ship Eng. 25(1), 57–60 (2003)Google Scholar
  23. 23.
    S.-Z. Wang, Y.-P. Ouyang, The calibration coefficients experimentally determined and theoretically calculated in measuring residual stress by hole-drilling method. Acta Aeronautica Et Astronautica Sinica 11(5), A300–A304 (1990)Google Scholar
  24. 24.
    K. Wang, L.-I. Rong, H.-E. Tao, H.-D. Wang, Using the hole-drilling method to measure residual stress. J. Luoyang Technol. Coll. 15(3), 19–20 (2005)Google Scholar

Copyright information

© The Optical Society of India 2018

Authors and Affiliations

  • Fan Wang
    • 1
  • Ya-ping Zhang
    • 1
  • Hui Wang
    • 2
  • Wei Xu
    • 2
  • Yong-an Zhang
    • 1
  • Chong-guang Li
    • 1
  1. 1.Faculty of ScienceKunming University of Science and TechnologyKunmingChina
  2. 2.Yunnan Key Laboratory of Disaster Reduction in Civil Engineering, Faculty of Civil Engineering and MechanicsKunming University of Science and TechnologyKunmingChina

Personalised recommendations