Journal of Optics

, Volume 47, Issue 4, pp 511–515 | Cite as

Reduction of yellow and blue luminescence in Si-doped GaN by rapid thermal annealing

  • X. Z. Chai
  • B. Y. QuEmail author
  • P. Liu
  • Y. C. Jiao
  • Y. S. Zhu
  • X. Q. Fang
  • P. Han
  • R. Zhang
Research Article


Si-doped GaN films grown by metal organic chemical vapour deposition have been annealed under different annealing conditions in N2 ambient. The annealed films have been characterized by photoluminescence and high resolution X-ray diffraction. The results show that the rapid thermal annealing (RTA) treatment suppresses the yellow and blue luminescence bands in the annealed Si-doped GaN films. For the sample annealed at 850 °C for 3 min, the yellow and blue band intensities even decreases by approximate one order of magnitude over the as-grown sample. In addition, the densities of the edge and screw threading dislocations in the Si-doped GaN also decrease after the RTA treatment. These facts provide the evidence that the RTA technique can effectively improve the crystalline quality of the Si-GaN films.


Yellow luminescence Blue luminescence Thermal annealing 



This work was supported by the National Nature Science Foundation of China (61473266, 61673404), the Program for Science and Technology Innovation Talents in Universities of Henan Province (16HASTIT033), the Science and Technique Foundation of Henan Province (152102210153), and the Key Program in Universities of Henan Province (17B520044).


  1. 1.
    H. Amano, N. Sawaki, I. Akasaki et al., Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 48, 353–355 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    S.J. Nakamura, GaN growth using GaN buffer layer. Jpn. J. Appl. Phys. 30, L1705–L1707 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    M.A. Reshchikov, H. Morkoc, Luminescence properties of defects in GaN. J. Appl. Phys. 97, 061301 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    D.G. Zhao, D.S. Jiang, J.J. Zhu et al., Does an enhanced yellow luminescence imply a reduction of electron mobility in n-type GaN? J. Appl. Phys. 102, 113521 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    D.G. Zhao, D.S. Jiang, H. Yang et al., Role of edge dislocations in enhancing the yellow luminescence of n-type GaN. Appl. Phys. Lett. 88, 241917 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    G. Li, S.J. Chua, S.J. Xu et al., Nature and elimination of yellow-band luminescence and donor acceptor emission of undoped GaN. Appl. Phys. Lett. 74, 2821–2823 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    S. Suresh, S. Lourdudoss, G. Landgren et al., Studies on the effect of ammonia flow rate induced defects in gallium nitride grown by MOCVD. J. Cryst. Growth 312, 3151–3155 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Z.L. Fang, S.P. Li, J.C. Li et al., GaN on Si-rich SiNx-coated sapphire at different growth stages: the surface morphologies and optical properties. Thin Solid Films 516, 6344–6352 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    M. Yoshikawa, M. Kunzer, J. Wagner et al., Band-gap renormalization and band filling in Si-doped GaN films studied by photoluminescence spectroscopy. J. Appl. Phys. 86, 4400–4402 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    J.W.P. Hsu, F.F. Schrey, H.M. Ng, Spatial distribution of yellow luminescence related deep levels in GaN. Appl. Phys. Lett. 83, 4172–4174 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    M.A. Reshchikov, R.Y. Korotkov, Analysis of the temperature and excitation intensity dependencies of photoluminescence in undoped GaN films. Phys. Rev. B 64, 115205 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    E.F. Schubert, I.D. Goepfert, J.M. Redwing, Evidence of compensating centers as origin of yellow luminescence in GaN. Appl. Phys. Lett. 71, 3224–3226 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    J. Neugebauer, C.G. Van de Walle, Gallium vacancies and the yellow luminescence in GaN. Appl. Phys. Lett. 69, 503–505 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    N. Chand, R. People, F.A. Baiocchi et al., Significat improvement in crystalline quality of molecular beam epitaxially grown GaAs on Si (100) by rapid thermal annealing. Appl. Phys. Lett. 49, 815–817 (1986)ADSCrossRefGoogle Scholar
  15. 15.
    M. Yamaguchi, M. Tachikawa, Y. Itoh et al., Thermal annealing effects of defect reduction in GaAs on Si substrates. J. Appl. Phys. 68, 4518–4522 (1990)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2018

Authors and Affiliations

  • X. Z. Chai
    • 1
  • B. Y. Qu
    • 1
    Email author
  • P. Liu
    • 1
  • Y. C. Jiao
    • 1
  • Y. S. Zhu
    • 1
  • X. Q. Fang
    • 1
  • P. Han
    • 2
  • R. Zhang
    • 2
  1. 1.School of Electric and Information EngineerZhongyuan University of TechnologyZhengzhouChina
  2. 2.School of Electronic Science and EngineeringNanjing UniversityNanjingChina

Personalised recommendations