Advertisement

Rendering Morpho butterflies based on high accuracy nano-optical simulation

  • 479 Accesses

  • 13 Citations

Abstract

A rendering method, based on high accuracy nano-optical simulations, is developed and applied to render the iridescent colors of the Morpho butterfly. The wings of the male display blue structural colors and backscatterings. In order to capture the Morpho butterfly features, subwavelength interactions on the scales must be rigorously taken into account. We calculate optical interference in the subwavelength scale structure using the high accuracy nonstandard finite-difference time-domain method, and validate the results by comparing with experimental measurements. Using our simulation results, realistic Morpho butterfly images are rendered.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    W.K. Dai, R.C. Chang, Z.C. Shih, Fractal patern for a butterfly wing. Vis. Comput. Nat. 11, 177–187 (1995)

  2. 2.

    A.R. Parker, 515 million years of structural colour. J. Optic. Pure. Appl. Optic. 2(6), 15–28 (2000)

  3. 3.

    P. Vukusic, J.R. Sambles, C.R. Lawrence, R.J. Wootton, Structural colour: now you see it—now you don’t. Nature 410, 36 (2001)

  4. 4.

    P. Vukusic, J.R. Sambles, Photonic structures in biology. Nature 424, 852–855 (2003)

  5. 5.

    A. Lefohn, R. Caruso, E. Reinhard, B. Budge, An ocularist’s approach to human iris synthesis. IEEE Comput. Graph. Appl. 23(6), 70–75 (2003)

  6. 6.

    J. Egholm, N. J. Christensen, A phenomenological representation of iridescent colors in butterfly wings. in WSCG Short Communications conference proceedings (WSCG, 2004)

  7. 7.

    S. Kinoshita, S. Yoshioka, Structrual Colors in Biological Systems (Osaka University Press, 2005)

  8. 8.

    M.W.Y. Lam, G.V.G. Baranoski, A predictive light transport model for the human iris. Comput. Graph. Forum 25(3), 359–368 (2006)

  9. 9.

    K. Ward, F. Bertails, T. Y. Kim, S. R. Marschner, M. P. Cani, M. C. Lin, A survey on hair modeling: Styling, simulation, and rendering. IEEE Trans. Visual. Comput. Graph., 13(2), (2007)

  10. 10.

    S. Kinoshita, S. Yoshioka, J. Miyazaki, Physics of structural colors. Institute of Physics (IOP) Publishing, Reports on Progress in Physics, 71(7), 076401 (2008)

  11. 11.

    J.B. Cole, High-accuracy yee algorithm based on nonstandard finite differences: New developments and verifications. IEEE Trans. Antenn. Propag. 50(9), 1185–1191 (2002)

  12. 12.

    N. Okada, J.B. Cole, Simulation of whispering gallery modes in the mie regime using the nonstandard finite-difference time domain algorithm. J. Optic. Soc. Am. B 27(4), 631–639 (2010)

  13. 13.

    B. Gralak, G. Tayeb, S. Enoch, Morpho butterflies wings color modeled with lamellar grating theory. Opt. Express 9(11), 567–578 (2001)

  14. 14.

    N. Shichijo, S. Iwasawa, Y. Kawaguchi, Rendering methods for models with complicated micro structures. The 14th International Conference on Artificial Reality and Telexistence (Nov. 2004)

  15. 15.

    Y. Sun, Rendering biological iridescences with rgb-based renderers. ACM Trans. Graph. 25(1), 100–129 (2006)

  16. 16.

    I. Sadeghi, H. W. Jensen, A physically based anisotropic iridescence model for rendering morpho butterflies photo-realistically (UCSD Research EXPO, 2008)

  17. 17.

    L. Plattner, Optical properties of the scales of morpho rhetenor butterflies: theoretical and experimental investigation of the back-scattering of light in the visible spectrum. J. R. Soc. Interface 22(1), 49–59 (2012)

  18. 18.

    S. Kinoshita, S. Yoshioka, Y. Fujii, N. Okamoto, Photophysics of structural color in the morpho butterflies. Forma 17, 103–121 (2002)

  19. 19.

    D. Jackel, B. Walter, Modeling and rendering of the atmosphere using mie-scattering. Comput. Graph. Form 16(4), 201–210 (1997)

  20. 20.

    M.J. Harris, A. Lastra, Real-time cloud rendering. EUROGRAPHICS 20(3), 201–210 (2001)

  21. 21.

    K. Iwasaki, K. Matsuzawa, T. Nishita, Real-time rendering of soap bubbles taking into account light interference. in Proceedings of the Computer Graphics International (IEEE Computer Society, 2004), pp. 344–348

  22. 22.

    R. Shimada, Y. Kawaguchi, Brdf estimation system for structural colors. in Proceedings of the 2005 international conference on Augmented tele-existence (ACM, 2005), pp. 16–21

  23. 23.

    J. Egholm, N. J. Christensen, Rendering compact discs and other diffractive surfaces illuminated by linear light sources. in Proceedings of the 4th international conference on Computer graphics and interactive techniques in Australasia and Southeast Asia (ACM, 2006) pp. 329–332

  24. 24.

    J. Stam, Diffraction shaders. in SIGGRAPH 99 Conference Proceedings, Annual Conference Series (ACM, 1999), pp. 101–110

  25. 25.

    H. Hirayama, K. Kaneda, H. Yamashita, Y. Monden, An accurate illumination model for objects coated with multilayer films. in Proceedings of Eurographics 2000 Short Presentations (Eurographics, 2000), pp. 143–150

  26. 26.

    C. Lindsay, E. AGU, Physically-based real-time diffraction using spherical harmonics. in Advances in Visual Computing, vol 4292 (Springer, Berlin, 2006), pp. 505–517

  27. 27.

    S.B. Oh, S. Kashyap, R. Garg, S. Chandran, R. Raskar, Rendering wave effects with augmented light field. Comput. Graph. Forum 29(2), 507–516 (2010)

  28. 28.

    A. Saito, Y. Miyamura, M. Nakajimaad Y. Ishikawa, K. Sogo, Y. Kuwahara, Y. Hirai, Reproduction of the morpho blue by nanocasting lithography. J. Vac. Sci. Tech. B, 24(3248), (2006)

  29. 29.

    A. Saito, Y. Miyamura, Y. Ishikawa, J. Murase, M. A. Kasaya, Y. Kuwahara, Reproduction, mass production, and control of the morpho butterfly’s blue. Proceedings SPIE, 7205, (2009)

  30. 30.

    A. Saito, Material design and structural color inspired by biomimetic approach. Sci. Tech. Adv. Mat. 12(064709), (2011)

  31. 31.

    M. Kambe, D. Zhu, S. Kinoshita, Origin of retroreflection from a wing of the morpho butterfly. J. Phys. Soc. Jap. 80(5), 054801 (2011)

  32. 32.

    S. Banerjee, Z. Dong, Optical characterization of iridescent wings of morpho butterflies using a high accuracy nonstandard finite-difference time-domain algorithm. Optic. Rev. 14(6), 359–361 (2007)

  33. 33.

    D. Zhu, S. Kinoshita, D. Cai, J.B. Cole, Investigation of structural colors in morpho butterflies using the nonstandard finite-difference time-domain method: effects of alternately stacked shelves and ridge density. Phys. Rev. E(80), 051924 (2009)

  34. 34.

    R.T. Lee, G.S. Smith, Detailed electromagnetic simulation for the structural color of butterfly wings. Appl. Opt. 48(21), 4177–4190 (2009)

  35. 35.

    B. E. Smits, G. W. Meyer, Newton s colors: Simulating interference phenomena in realistic image synthesis. in Proceedings Eurographics Workshop on Photosimulation, Realism and Physics in Computer Graphics (Eurographics, 1990), pp. 185–194

  36. 36.

    J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995)

  37. 37.

    H. Tabata, K. Kumazawa, M. Funakawa, J. Takimoto, M. Akimoto, Microstructures and optical properties of scales of butterfly wings. Optic. Rev. 3(2), 139–145 (1996)

  38. 38.

    P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1989)

  39. 39.

    R. E. Mickens, Nonstandard Finite Difference Models of Differential Equation (World Scientific, 1994)

  40. 40.

    N. Okada, J. B. Cole, A nonstandard finite difference time domain algorithm for berenger’s perfectly matched layer. Appl. Comput. Electromagnet. Soc. J. 26(2), (2011)

  41. 41.

    R.J. Luebbers, D. Ryan, J. Beggs, A two-dimensional time-domain near-zone to far-zone transformation. IEEE Trans. Antenn. Propag. 40(7), 848–851 (1992)

  42. 42.

    G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley-Interscience, 1982)

Download references

Acknowledgments

We deeply appreciate the financial support of Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) Fellows.

Author information

Correspondence to Naoki Okada.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MP4 39473 kb)

Supplementary Material

(MP4 39473 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Okada, N., Zhu, D., Cai, D. et al. Rendering Morpho butterflies based on high accuracy nano-optical simulation. J Opt 42, 25–36 (2013). https://doi.org/10.1007/s12596-012-0092-y

Download citation

Keywords

  • Morpho butterfly
  • Iridescence
  • Photorealistic rendering
  • FDTD simulation
  • Physically based model