Proceedings of the Zoological Society

, Volume 72, Issue 3, pp 273–282 | Cite as

Inter-Population Genetic Variation in the Indian Pygmy Field Mouse Mus terricolor Blyth, 1851 (Rodentia, Muridae) from Terai and Dooars of Darjeeling Foothills

  • Mahua Rudra
  • Min BahadurEmail author
Research Article


Genetic variability and divergence among 9 natural populations of Mus terricolor from Terai and the Dooars regions of Darjeeling foothills, India were examined by electrophoretic analysis of 10 enzyme/protein loci. All populations were highly polymorphic in terms of percent polymorphism (P), effective number of alleles (Ae) and heterozygosity (H). P varied from 90 to 100%, while Ae was found to range from 1.8148 to 2.3720 in different populations. The mean Ho were 0.4144 and 0.4495 in the Dooars and Terai populations, respectively. Dooars populations were moderately differentiatiated (FST = 0.0914) with gene flow of 2.4865 while, a low level of genetic differentiation was found in Terai populations (FST = 0.0295) combined with high gene flow of 8.2197. UPGMA cluster analysis using Nei’s D-values revealed three clusters: cluster I and III comprising of Dooars populations and cluster II consists of Terai populations. Two populations, Rohimabad and Kumargram (cluster III) showing higher D value than the other Dooars populations appeared as outgroup. Garidhura population in Terai also showed somewhat unexpected D values which is not concordant with geographical distance. Inbreeding was not pronounced among local populations however, moderate level of differentition exists may be due to physical barrier and adaptation to variable habitat.


Mus terricolor Genetic variation F-statistics Heterozygosity Gene flow 



The financial support received from the Department of Zoology, University of North Bengal is sincerely acknowledged. Authors are also thankful to the head Department of Zoology for providing the Departmental Central Instrument facility which is supported by the Fund for Improvement of Science and Technology Infrastructure Programme, Department of Science and Technology, New Delhi, India and the Special Assistance Programme, University Grants Commission, New Delhi, India. The authors gratefully acknowledge Professor Ranjan Roy, Department of Geography, University of North Bengal for providing information on climate of this region.

Compliance with Ethical Standards

Conflict of interest

There is no conflict of interest.

Supplementary material

12595_2018_274_MOESM1_ESM.jpg (16 kb)
Supplementary material 1 (JPEG 15 kb)
12595_2018_274_MOESM2_ESM.jpg (50 kb)
Supplementary material 2 (JPEG 50 kb)
12595_2018_274_MOESM3_ESM.jpg (35 kb)
Supplementary material 3 (JPEG 35 kb)
12595_2018_274_MOESM4_ESM.jpg (31 kb)
Supplementary material 4 (JPEG 31 kb)
12595_2018_274_MOESM5_ESM.jpg (31 kb)
Supplementary material 5 (JPEG 30 kb)
12595_2018_274_MOESM6_ESM.jpg (37 kb)
Supplementary material 6 (JPEG 37 kb)
12595_2018_274_MOESM7_ESM.jpg (19 kb)
Supplementary material 7 (JPEG 18 kb)
12595_2018_274_MOESM8_ESM.jpg (14 kb)
Supplementary material 8 (JPEG 13 kb)
12595_2018_274_MOESM9_ESM.jpg (29 kb)
Supplementary material 9 (JPEG 29 kb)
12595_2018_274_MOESM10_ESM.jpg (40 kb)
Supplementary material 10 (JPEG 39 kb)
12595_2018_274_MOESM11_ESM.docx (21 kb)
Supplementary material 11 (DOCX 20 kb)
12595_2018_274_MOESM12_ESM.docx (36 kb)
Supplementary material 12 (DOCX 36 kb)


  1. Allendorf, F.W., and G. Luikart. 2007. Conservation and the genetics of populations. Oxford: Blackwell Publishing.Google Scholar
  2. Anderson, P.K. 1970. Ecological structure and gene flow in small mammals. Symposia of the Zoological Society of London 26: 299–325.Google Scholar
  3. Awasthi, M., K.V. Bhat, and R.K. Anand. 1999. Allozyme variation in four Indian species of genus Mus: A comparative analysis. Journal of Genetics 78: 73–80.CrossRefGoogle Scholar
  4. Beardmore, J. 1970. Ecological factors and the variability of gene pools in Drosophila. In Essays in evolution and genetics in honor of Theodosius Dobzhansky, ed. M. Hecht and W. Steere, 299–314. New York: Appleton.CrossRefGoogle Scholar
  5. Benado, M., M. Aguilera, O.A. Reig, and F. Ayala. 1979. Biochemical genetics of chromosome forms of Venezuelan spiny rats of the Proechimys guairae and Proechimys trinitatis super species. Genetica 54: 89–97.CrossRefGoogle Scholar
  6. Berry, R.J. 1986. Genetical process in wild mouse populations. Past myth and present knowledge. Current Topics in Microbiology and Immunology 127: 86–94.Google Scholar
  7. Berry, R.J., and M.E. Jakobson. 1974. Vagility in an island population of the house mouse. Journal of Zoology (London) 173: 341–354.CrossRefGoogle Scholar
  8. Berry, R.J., and J. Peters. 1981. Allozymic variation in house mouse populations. In Mammalian population genetics, ed. M.H. Smith and J. Joule, 242–253. Georgia: University of Georgia Press.Google Scholar
  9. Berry, R.J., G.S. Triggs, P. King, H.R. Nash, and L.R. Noble. 1991. Hybridization and gene flow in house mice introduced into an existing population on an island. Journal of Zoology 225: 615.CrossRefGoogle Scholar
  10. Bonhomme, F., J. Catalan, J. Britton-Davidian, V.M. Chapman, K. Moriwaki, E. Nevo, and L. Thaler. 1984. Biochemical diversity and evolution in the genus Mus. Biochemical Genetics 22: 275–303.CrossRefGoogle Scholar
  11. Boursot, P., W. Din, R. Anand, D. Darviche, B. Dod, F. Von-Deimling, P. Talwar, and F. Bonhomme. 1996. Origin and radiation of the house mouse: Mitochondrial DNA phylogeny. Journal of Evolutionary Biology 9: 391–415.CrossRefGoogle Scholar
  12. Britton-Davidian, J. 1990. Genic differentiation in M. m. domesticus populations from Europe, the Middle East and North Africa: Geographic patterns and colonization events. Biological Journal of the Linnean Society 41: 27–45.CrossRefGoogle Scholar
  13. Britton-Davidian, J., and L. Thaler. 1978. Evidence of the presence of two sympatric species of mice (Genus Mus L.) in Southern France based on biochemical genetics. Biochemical Genetics 16: 213–225.CrossRefGoogle Scholar
  14. Britton-Davidian, J., F. Bonhomme, H. Croset, E. Capanna, and L. Thaler. 1980. Variabilite genetique chez les populations de Souris (genre Mus L.) a nombre chromosique reduit. Comptes Rendues-Academic des SciencesD. 290: 195–198.Google Scholar
  15. Britton-Davidian, J., J.H. Nadeau, H. Croset, and L. Thaler. 1989. Genic differentiation and origin of Robertsonian populations of the house mouse (Mus musculus domesticus Rutty). Genetical Research 53: 29–44.CrossRefGoogle Scholar
  16. Britton-Davidian, J., J. Catalan, J. Lopez, G. Ganem, A.C. Nunes, M.G. Ramalhinho, J.C. Auffray, J.B. Searle, and M.L. Mathias. 2007. Patterns of genic diversity and structure in a species undergoing rapid chromosomal radiation: An allozyme analysis of house mice from the Madeira archipelago. Heredity 99: 432–442.CrossRefGoogle Scholar
  17. Chatterjee, B., M. Bahadur, and T. Sharma. 1994. Mitochondrial DNA restriction maps of Mus booduga, Mus terricolor and Mus musculus tytleri. Journal of Genetics 73: 57–64.CrossRefGoogle Scholar
  18. Dallas, J.F., B. Dod, P. Boursot, E.M. Prager, and F. Bonhomme. 1995. Population subdivision and gene flow in Danish house mice. Molecular Ecology 4: 311–320.CrossRefGoogle Scholar
  19. Din, W., R. Anand, P. Boursot, D. Darviche, B. Dod, and E. Jouvin-Marche. 1996. Origin and radiation of the house mouse: Clues from nuclear genes. Journal of Evolutionary Biology 9: 519–539.CrossRefGoogle Scholar
  20. Faleh, A.B., A.A. Shahin, and K. Said. 2009. Allozyme polymorphism and genetic Differentiation among populations of Jaculus jaculus and J. orientalis (Rodentia: Dipodidae) in Tunisia. Zoological Research 30 (3): 247–254.CrossRefGoogle Scholar
  21. Felsenstein, J. 2005. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle.Google Scholar
  22. Gillespie, J.H., and C.H. Langley. 1973. A general model to account for enzyme variation in natural populations. Genetics 76: 837–884.Google Scholar
  23. Gray, J.E. 1837. Description of some new or little known Mammalia principally in the British Museum collection. Magazine of Natural History 1: 577–587.Google Scholar
  24. Harris, H., and D.A. Hopkins. 1976. Handbook of enzyme electrophoresis in human genetics. Amsterdam: North Holland.Google Scholar
  25. Hauffe, H.C., S. Fraguedakis-Tsolis, P.M. Mirol, and J.B. Searle. 2002. Studies of mitochondrial DNA, allozyme and morphometric variation in a house mouse hybrid zone. Genetics Research 80: 117–129.CrossRefGoogle Scholar
  26. Hogan, K.M., M.C. Hedin, H.S. Koh, S.K. Davis, and I.F. Greenbaum. 1993. Systematic and taxonomic implications of karyotypic, electrophoretic, and mitochondrial-DNA variation in Peromyscus from the Pacific Northwest. Journal of Mammalogy 74: 819–831.CrossRefGoogle Scholar
  27. Ibis, O., C. Tez, S. Ozcan, M. Kilic, and M. Telcioglu. 2011. A preliminary study of the allozyme variation in the Grey Hamster, Cricetulus migratorius (Mammalia: Rodentia), from the Asian part of the Turkey. Archives of Biological Sciences 63 (2): 381–391.CrossRefGoogle Scholar
  28. Jacobs, L.L. 1978. Fossil rodents (Rhyzomyidae and Muridae) from Neogene Siwalik deposits, Pakistan. Museum of Northern Arizona Bulletin 52: 1–103.Google Scholar
  29. Johnson, E., and R.K. Selander. 1971. Protein variation and systematics in Kangaroo rats (Genus Dipodomys). Systematic Zoology 20 (4): 377–405.CrossRefGoogle Scholar
  30. Kankilic, T., E. Colak, R. Colak, and N. Yigit. 2005. Allozyme variation in Spalax leucodon Nordmann, 1840 (Rodentia: Spalacidae) in the Area between Ankara and Beysehir. Turkish Journal of Zoology 29: 377–384.Google Scholar
  31. Kimura, M., and J.F. Crow. 1964. The number of alleles that can be maintained in a finite population. Genetics 49: 725–738.Google Scholar
  32. Koehn, R.K. 1969. Esterase heterogeneity: Dynamics of a polymorphism. Science 163: 943–944.CrossRefGoogle Scholar
  33. Koehn, R.K., and D.I. Rasmussen. 1967. Polymorphic and monomorphic serum esterase heterogeneity in catostomid fish populations. Biochemical Genetics 1: 131–144.CrossRefGoogle Scholar
  34. Levene, H. 1949. On a matching problem in genetics. Annals of Mathematical Statistics 20: 91–94.CrossRefGoogle Scholar
  35. Manjunatha, K.A., and N.V. Aswathanarayana. 1979. Studies on chromosomes of genus Mus: Autosomal polymorphism in the Indian pygmy mouse Mus dunni (Wroughton). Current Science 48: 657–659.Google Scholar
  36. Markvong, A., T. Marshall, S. Pathak, and T.C. Hsu. 1975. Chromosomes and DNA of Mus: The karyotype of Mus flavidiventris and Mus dunni. Cytogenetis and Cell Genetics 14: 116–125.CrossRefGoogle Scholar
  37. Martino, A.M.G., E. Capanna, and M.G. Filippucci. 2001. Allozyme variation and divergence in the phyllotine rodent Calomys hummelincki (Husson, 1960). Genetica 110: 163–175.CrossRefGoogle Scholar
  38. Matthey, R., and F. Peter. 1968. Existence de deuxespecesdistinctes, l’unechromosomiquement polymorphs chezdes Mus indiens du groupe booduga. Etude cytogenetqueet taxonomique. Revue Suisse de Zoologie 75: 461–498.Google Scholar
  39. Merritt, R. 1972. Geographic distribution and enzymatic properties of lactate dehydrogenase allozymes in the fathead minnow, Pimephales promelas. The American Naturalist 106: 173–184.CrossRefGoogle Scholar
  40. Musser, G.G., and M.D. Carleton. 1993. Family Muridae. In Mammal species of the world: A taxonomic and geographic reference, 2nd ed, ed. D.E. Wilson and D.M. Reeder, 501–756. Washington DC: Smithsonian Instititution.Google Scholar
  41. Nei, M. 1972. Genetic distance between populations. The American Naturalist 106 (949): 283–292.CrossRefGoogle Scholar
  42. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America 70 (3321–3323): 17.Google Scholar
  43. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.Google Scholar
  44. Nevo, E., G.M. Filippucci, T. Pavlicek, O. Gorlova, G. Shenbrot, E. Ivanitskaya, and A. Beiles. 1998. Genotypic and phenotypic divergence of rodents (Acomys cahirinus and Apodemus mystacinus) at “Evolution Canyon”: Micro- and macroscale parallelism. Acta Theriol Suppl 5: 9–34.CrossRefGoogle Scholar
  45. Patnaik, R., M. Bahadur, T. Sharma, and A. Sahni. 1993. A comparative analysis of molars of Mus booduga, Mus dunni, and fossil Mus of the Indian subcontinent: Phylogenetic and Palaeobiogeographic implications. Current Science 65: 782–786.Google Scholar
  46. Petras, M.L. 1967. Studies of natural populations of Mus. Biochemical polymorphisms and their bearing on breeding structure. Evolution 21: 259–274.CrossRefGoogle Scholar
  47. Rudra, M., and M. Bahadur. 2013. Heterochromatin variation among the populations of Mus terricolor Blyth, 1851 (Rodentia, Muridae) Chromosome type I. Comparative Cytogenetics 7 (2): 139–151.CrossRefGoogle Scholar
  48. Rudra, M., B. Chatterjee and M. Bahadur. 2016. Phylogenetic relationship and time of divergence of Mus terricolor with reference to other Mus species. Journal of Genetics 95 (2): 399–409. ISSN: 0022-1333.Google Scholar
  49. Selander, R.K., and S.Y. Yang. 1969. Protein polymorphism and genic heterozygosity in a wild population of the house mouse (Mus musculus). Genetics 63: 653–667.Google Scholar
  50. Selander, R.K., M.H. Smith, S. Y. Yang, W.E. Johnson and J.B. Centry. 1971. Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old field mouse (Peromyscus polionotus). Studies in Genetics VI. University of Texas (Austin) publications 7103: 49–90.Google Scholar
  51. Sen, S., and T. Sharma. 1983. Role of constitutive heterochromatin in evolutionary divergence: results of chromosome banding and condensation inhibition studies in Mus musculus, Mus booduga and Mus dunni. Evolution 37 (3): 628–636.CrossRefGoogle Scholar
  52. Sharma, T. 1996. Chromosomal and molecular divergence in the Indian pygmy field mice Mus booduga-terricolor lineage of the sub genus Mus. Genetica 97: 331–338.CrossRefGoogle Scholar
  53. Sharma, T., and G.S. Garg. 1975. Constitutive heterochromatin and karyotype variation in Indian pygmy mouse, Mus dunni. Genetical Research 25: 189–191.CrossRefGoogle Scholar
  54. Sharma, T., N. Cheong, P. Sen, and S. Sen. 1986. Constitutive heterochromatin and evolutionary divergence of Mus dunni, Mus booduga and Mus musculus. Current Topics in Microbiology and Immunology 127: 35–44.Google Scholar
  55. Sharma, T., A.S. Balajee, and N. Cheong. 1990. Chromosomal speciation: Constitutive heterochromatin and evolutionary differentiation of the Indian Pygmy Field Mice. In Trends in Chromosome Research, ed. T. Sharma, 265–283. New Delhi: Springer.CrossRefGoogle Scholar
  56. Singh S. 1996. Genetic variation and level of genetic divergence in the Indian pygmy field mice. Ph.D., Banaras Hindu University, Banaras, India.Google Scholar
  57. Singh, S., and T. Sharma. 1997. High levels of genetic variation in Indian field mouse. Journal of Genetics 76: 189–200.CrossRefGoogle Scholar
  58. Sneath, P.H.A., and R.R. Sokal. 1973. Numerical taxonomy. San Francisco: W.H. Freeman and company.Google Scholar
  59. Spiridonova, L.N., G.N. Chelomina, K. Moriwaki, H. Yonekawa, and A.S. Bogdanov. 2004. Genetic and taxonomic diversity of the house mouse Mus musculus from the Asian part of the former Soviet Union. Russian Journal of Genetics 40 (10): 1134–1143.CrossRefGoogle Scholar
  60. Sugg, D.W., M.L. Kennedy, and G.A. Hedit. 1990. Genetic variation in the Texas mouse, Peromyscus attawateri. Journal of Mammalogy 71 (3): 309–317.CrossRefGoogle Scholar
  61. Tryfonopoulos, G., B. Chondropoulos, and S. Fraguedakis-Tsolis. 2005. Allozyme polymorphism among 14 populations of the house mouse, Mus musculus domesticus, from Greece. Biochemical Genetics 43 (1): 11–24.CrossRefGoogle Scholar
  62. Weir, B.S., and C.C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.Google Scholar
  63. Wright, S. 1978. Evolution and the genetics of populations, Vol. 4. Variability within and among natural populations. University of Chicago, Chicago.Google Scholar
  64. Yeh F.C., R.C. Yang and T. Boyle. 1999. POPGENE version 1.32: A joint project development for Molecular Biology and Biotechnology Center, University of Alberta and Center for International Forestry Research.Google Scholar

Copyright information

© Zoological Society, Kolkata, India 2018

Authors and Affiliations

  1. 1.Genetics and Molecular Biology Laboratory, Department of ZoologyUniversity of North BengalSiliguriIndia

Personalised recommendations