Advertisement

Proceedings of the Zoological Society

, Volume 72, Issue 3, pp 301–312 | Cite as

Variations in Composition of Alkanes and Free Fatty Acids in Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae) on Exposure to Monocrotophos

  • Amarnath Karmakar
  • Saubhik Mitra
  • Abhishek Mukherjee
  • Anandamay BarikEmail author
Research Article
  • 13 Downloads

Abstract

Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae) is an important herbivore pest of cucurbitaceae, which is currently controlled by insecticides in southeast Asia. The insect cuticle is the first line of defence against insecticides. So, we investigated the variations in the composition of n-alkanes and free fatty acids (FFAs) in cuticular and internal lipids of A. foveicollis males and females exposed to monocrotophos compared to untreated adults. Both sexes of A. foveicollis adults were dipped in petroleum ether for 1 min at room temperature for extraction of surface waxes, and the insects were further kept in dichloromethane for 15 days for extraction of internal lipids. n-Alkanes and FFAs of cuticular and internal lipids were identified and quantified by GC–MS and GC–FID analyses. Higher quantities of cuticular lipids were observed in males and females exposed to monocrotophos than untreated males and females. Twenty n-alkanes were identified between n-C15 and n-C36 in cuticular lipids of untreated A. foveicollis adults; whereas 21 n-alkanes were detected in cuticular lipids of treated adults. Nineteen FFAs were recorded between C10:0 and C22:0 in cuticular lipids of untreated adults; whereas 21 and 19 FFAs were recorded in cuticular lipids of treated males and females, respectively. Hentriacontane and palmitoleic acid were the predominant n-alkane and FFA in the cuticular lipids of treated males and females, respectively. This study revealed that change of alkanes and FFAs in cuticular lipids of A. foveicollis males and females are linked to exposure to monocrtophos, which might result in increasing resistance of A. foveicollis.

Keywords

Monocrotophos Cuticular lipids Internal lipids Alkanes Free fatty acids 

Notes

Acknowledgements

We thank Dr. Janakiraman Poorani, Principal Scientist, National Research Centre for Banana, Tamilnadu for identifying the insect. We are thankful to DST PURSE Phase-II for providing necessary instrumental facilities.

Supplementary material

12595_2018_271_MOESM1_ESM.doc (1.3 mb)
Supplementary material 1 (DOC 1285 kb)

References

  1. Adhikary, P., A. Mukherjee, and A. Barik. 2015. Attraction of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) to four varieties of Lathyrus sativus L. seed volatiles. Bulletin of Entomological Research 105: 187–201.CrossRefGoogle Scholar
  2. Agrahari, S., K.C. Pandey, and K. Gopal. 2007. Biochemical alteration induced by monocrotophos in the blood plasma of fish, Channa punctatus (Bloch). Pesticide Biochemistry and Physiology 88: 268–272.CrossRefGoogle Scholar
  3. Ahmad, M., I.M. Arif, and Z. Ahmad. 1995. Monitoring insecticide resistance of Helicoverpa armigera (Lepidoptera: Noctuidae) in Pakistan. Journal of Economic Entomology 88: 771–776.CrossRefGoogle Scholar
  4. Akino, T., K. Yamamura, S. Wakamura, and R. Yamaoka. 2004. Direct behavioral evidence for hydrocarbons as nestmate recognition cues in Formica japonica (Hymenoptera: Formicidae). Applied Entomology and Zoology 39: 381–387.CrossRefGoogle Scholar
  5. Blomquist, G.J., and A.-G. Bagnères. 2010. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  6. Chakravarthi, B.K., R. Naravaneni, G.H. Philip, and C.S. Reddy. 2009. Investigation of monocrotophos toxic effects on human lymphocytes at cytogenetic level. African Journal of Biotechnology 8: 2042–2046.Google Scholar
  7. Chung, H., and S.B. Carroll. 2015. Wax, sex and the origin of species: Dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays 37: 822–830.CrossRefGoogle Scholar
  8. Dujaković, N., S. Grujić, M. Radisić, T. Vasiljević, and M. Lausević. 2010. Determination of pesticides in surface and ground waters by liquid chromatography–electrospray–tandem mass spectrometry. Analytica Chimica Acta 678: 63–72.CrossRefGoogle Scholar
  9. Gibbs, A., and J.G. Pomonis. 1995. Physical properties of insect cuticular hydrocarbons: The effects of chain-length, methyl-branching and unsaturation. Comparative Biochemistry and Physiology—Part B: Biochemistry and Molecular Biology 112: 243–249.CrossRefGoogle Scholar
  10. Gibbs, A.G. 1998. Water-proofing properties of cuticular lipids. American Zoologist 38: 471–482.CrossRefGoogle Scholar
  11. Gibbs, A.G. 2002. Lipid melting and cuticular permeability: New insights into an old problem. Journal of Insect Physiology 48: 391–400.CrossRefGoogle Scholar
  12. Gibbs, A.G. 2007. Waterproof cockroaches: The early work of J. A. Ramsay. Journal of Experimental Biology 210: 921–922.CrossRefGoogle Scholar
  13. Gołębiowski, M., M.I. Boguś, M. Paszkiewicz, and P. Stepnowski. 2010. The composition of the free fatty acids from Dendrolimus pini exuviae. Journal of Insect Physiology 56: 391–397.CrossRefGoogle Scholar
  14. Gołębiowski, M., M.I. Boguś, M. Paszkiewicz, W. Wieloch, E. Włóka, and P. Stepnowski. 2012. The composition of the cuticular and internal free fatty acids and alcohols from Lucilia sericata males and females. Lipids 47: 613–622.CrossRefGoogle Scholar
  15. Gołębiowski, M., E. Malinski, M.I. Boguś, J. Kumirska, and P. Stepnowski. 2008. The cuticular fatty acids of Calliphora vicina, Dendrolimus pini and Galleria mellonella larvae and their role in resistance to fungal infection. Insect Biochemistry and Molecular Biology 38: 619–627.CrossRefGoogle Scholar
  16. Gundi, V.A.K.B., G. Narasimha, and B.R. Reddy. 2005. Interaction effects of insecticides on microbial populations and dehydrogenase activity in a black clay soil. Journal of Environmental Science and Health B 40: 269–283.CrossRefGoogle Scholar
  17. Hadley, N.F. 1994. Water Relations of Terrestrial Arthropods. San Diego: Academic Press.Google Scholar
  18. Jabbar, A., S.Z. Masud, Z. Parveen, and M. Ali. 1993. Pesticide residues in cropland soils and shallow groundwater in Punjab Pakistan. Bulletin of Environmental Contamination and Toxicology 51: 268–273.CrossRefGoogle Scholar
  19. Joshi, A.K.R., and P.S. Rajini. 2012. Hyperglycemic and stressogenic effects of monocrotophos in rats: Evidence for the involvement of acetylcholinesterase inhibition. Experimental and Toxicologic Pathology 64: 115–120.CrossRefGoogle Scholar
  20. Karmakar, A., and A. Barik. 2016. Solena amplexicaulis (Cucurbitaceae) flower surface wax influencing attraction of a generalist insect herbivore, Aulacophora foveicollis (Coleoptera: Chrysomelidae). International Journal of Tropical Insect Science 36: 70–81.CrossRefGoogle Scholar
  21. Karmakar, A., U. Malik, and A. Barik. 2016a. Effects of leaf epicuticular wax compounds from Solena amplexicaulis (Lam.) Gandhi on olfactory responses of a generalist insect herbivore. Allelopathy Journal 37: 253–272.Google Scholar
  22. Karmakar, A., A. Mukherjee, and A. Barik. 2016b. Floral volatiles with colour cues from two cucurbitaceous plants causing attraction of Aulacophora foveicollis. Entomologia Experimentalis et Applicata 158: 133–141.CrossRefGoogle Scholar
  23. Kazi, A.I., and A. Oommen. 2012. Monocrotophos induced oxidative damage associates with severe acetylcholinesterase inhibition in rat brain. NeuroToxicology 33: 156–161.CrossRefGoogle Scholar
  24. Kerwin, J.L. 1984. Fatty acid regulation of the germination of Erynia variabilis conidia on adults and puparia of the lesser housefly, Fannia canicularis. Canadian Journal of Microbiology 30: 158–161.CrossRefGoogle Scholar
  25. Kranthi, K.R., D.R. Jadhav, R.R. Wanjari, S. Shakir Ali, and D. Russell. 2001. Carbamate and organophosphate resistance in cotton pests in India, 1995 to 1999. Bulletin of Entomological Research 91: 37–46.Google Scholar
  26. Lockey, K.H. 1988. Lipids of the insect cuticle: Origin, composition and function. Comparative Biochemistry and Physiology—Part B: Comparative Biochemistry 89: 595–645.CrossRefGoogle Scholar
  27. Majumder, S.P., and A.C. Das. 2016. Phosphate-solubility and phosphatase activity in Gangetic alluvial soil as influenced by organophosphate insecticide residues. Ecotoxicology and Environmental Safety 126: 56–61.CrossRefGoogle Scholar
  28. Malik, U., and A. Barik. 2015. Free fatty acids from the weed, Polygonum orientale leaves for attraction of the potential biocontrol agent, Galerucella placida (Coleoptera: Chrysomelidae). Biocontrol Science and Technology 25: 593–607.CrossRefGoogle Scholar
  29. Malik, U., A. Karmakar, and A. Barik. 2016. Attraction of the potential biocontrol agent Galerucella placida (Coleoptera: Chrysomelidae) to the volatiles of Polygonum orientale (Polygonaceae) weed leaves. Chemoecology 26: 45–58.CrossRefGoogle Scholar
  30. Mitra, S., N. Sarkar, and A. Barik. 2017. Long-chain alkanes and fatty acids from Ludwigia octovalvis weed leaf surface waxes as short-range attractant and ovipositional stimulant to Altica cyanea (Weber) (Coleoptera: Chrysomelidae). Bulletin of Entomological Research 107: 391–400.CrossRefGoogle Scholar
  31. Mukherjee, A., and A. Barik. 2014. Long-chain free fatty acids from Momordica cochinchinensis Spreng flowers as allelochemical influencing the attraction of Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae). Allelopathy Journal 33: 255–266.Google Scholar
  32. Mukherjee, A., A. Karmakar, and A. Barik. 2017. Bionomics of Momordica cochinchinensis fed Aulacophora foveicollis (Coleoptera: Chrysomelidae). Proceedings of the Zoological Society 70: 81–87.CrossRefGoogle Scholar
  33. Mukherjee, A., N. Sarkar, and A. Barik. 2013. Alkanes in flower surface waxes of Momordica cochinchinensis influence attraction to Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae). Neotropical Entomology 42: 366–371.CrossRefGoogle Scholar
  34. Mukherjee, A., N. Sarkar, and A. Barik. 2014. Long-chain free fatty acids from Momordica cochinchinensis leaves as attractants to its insect pest, Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae). Journal of Asia-Pacific Entomology 17: 229–234.CrossRefGoogle Scholar
  35. Mukherjee, A., N. Sarkar, and A. Barik. 2015a. Momordica cochinchinensis (Cucurbitaceae) leaf volatiles: semiochemicals for host location by the insect pest, Aulacophora foveicollis (Coleoptera: Chrysomelidae). Chemoecology 25: 93–104.CrossRefGoogle Scholar
  36. Mukherjee, A., N. Sarkar, and A. Barik. 2015b. Leaf surface n-alkanes of Momordica cochinchinensis Spreng as short-range attractants for its insect pest, Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae). Allelopathy Journal 36: 109–122.Google Scholar
  37. Mundhe, A.Y., and S.V. Pandit. 2014. Assessment of toxicity of monocrotophos in freshwater bivalve, Lamellidens marginalis, using different markers. Toxicology International 21: 51–56.Google Scholar
  38. Nawrot, J., M. Gawlak, J. Szafranek, B. Szafranek, E. Synak, J.R. Warchalewski, D. Piasecka-Kwiatkowska, W. Błaszczak, T. Jeliński, and J. Fornal. 2010. The effect of wheat grain composition, cuticular lipids and kernel surface microstructure on feeding, egg-laying, and the development of the granary weevil, Sitophilus granarius (L.). Journal of Stored Products Research 46: 133–141.CrossRefGoogle Scholar
  39. Nelson, D.R., and L.D. Charlet. 2003. Cuticular hydrocarbons of the sunflower beetle, Zygogramma exclamationis. Comparative Biochemistry and Physiology—Part B: Biochemistry and Molecular Biology 135: 273–284.CrossRefGoogle Scholar
  40. Nelson, D.R., D.L. Olson, and C.L. Fatland. 2002. Cuticular hydrocarbons of the flea beetles, Aphthona lacertosa and Aphthona nigriscutis, biocontrol agents for leafy spurge (Euphorbia esula). Comparative Biochemistry and Physiology—Part B: Biochemistry and Molecular Biology 133: 337–350.CrossRefGoogle Scholar
  41. Pamanji, R., M.S. Bethu, B. Yashwanth, S. Leelavathi, and J.V. Rao. 2015. Developmental toxic effects of monocrotophos, an organophosphorous pesticide, on zebrafish (Danio rerio) embryos. Environmental Science and Pollution Research 22: 7744–7753.CrossRefGoogle Scholar
  42. Paszkiewicz, M., A. Sikora, M.I. Boguś, E. Włόka, P. Stepnowski, and M. Gołębiowski. 2016. Effect of exposure to chlorpyrifos on the cuticular and internal lipid composition of Blattella germanica males. Insect Science 23: 94–104.CrossRefGoogle Scholar
  43. Pedrini, N., S.J. Mijailovsky, J.R. Girotti, R. Stariolo, R.M. Cardozo, A. Gentile, and M.P. Juárez. 2009. Control of pyrethroid-resistant Chagas disease vectors with entomopathogenic fungi. PLoS Neglected Tropical Disease 3: e434.CrossRefGoogle Scholar
  44. Rahaman, M.A., and M.D.H. Prodhan. 2007. Effects of net barrier and synthetic pesticides on red pumpkin beetle and yield of cucumber. International Journal of Sustainable Crop Production 2: 30–34.Google Scholar
  45. Raman, K., and R.S. Annadurai. 1985. Host selection and food utilization of the red pumpkin beetle, Raphidopalpa foveicollis (Lucas) (Chrysomelidae: Coleoptera). Proceedings: Animal Sciences 94: 547–556.Google Scholar
  46. Rangaswamy, V., P.B. Charyulu, and K. Venkateswarlu. 1989. Effect of monocrotophos and quinalphos on soil population and nitrogen-fixing activity of Azospirillum sp. Biomedical and Environmental Science 2: 305–311.Google Scholar
  47. Remia, K.M., S. Logaswamy, K. Logankumar, and D. Rajmohan. 2008. Effect of an insecticide (monocrotophos) on some biochemical constituents of the fish Tilapia mossambica. Pollution Research 27: 523–526.Google Scholar
  48. Reue, K. 2011. A thematic review series: Lipid droplet storage and metabolism: From yeast to man. Journal of Lipid Research 52: 1865–1868.CrossRefGoogle Scholar
  49. Rupa, D.S., P.V. Lakshman Rao, P.P. Reddy, and O.S. Reddi. 1988. In vitro effect of monocrotophos on human lymphocytes. Bulletin of Environmental Contamination and Toxicology 41: 737–741.CrossRefGoogle Scholar
  50. Sankhwar, M.L., R.S. Yadav, R.K. Shukla, D. Singh, R.W. Ansari, A.B. Pant, D. Parmar, and V.K. Khanna. 2013. Monocrotophos induced oxidative stress and alterations in brain dopamine and serotonin receptors in young rats. Toxicology and Industrial Health 32: 422–436.CrossRefGoogle Scholar
  51. Sarkar, N., and A. Barik. 2015. Free fatty acids from Momordica charantia L. flower surface waxes influencing attraction of Epilachna dodecastigma (Wied.) (Coleoptera: Coccinellidae). International Journal of Pest Management 61: 47–53.CrossRefGoogle Scholar
  52. Sarkar, N., A. Karmakar, and A. Barik. 2016. Volatiles of Solena amplexicaulis (Lam.) Gandhi leaves influencing attraction of two generalist insect herbivores. Journal of Chemical Ecology 42: 1004–1015.CrossRefGoogle Scholar
  53. Sarkar, N., U. Malik, and A. Barik. 2014. n–alkanes in epicuticular waxes of Vigna unguiculata (L.) Walp. leaves. Acta Botanica Gallica 161: 373–377.CrossRefGoogle Scholar
  54. Simpson, I.C., and P.A. Roger. 1995. The impact of pesticides on non-target aquatic invertebrates in wetland ricefields: A review. In Impact of pesticides on farmer health and the rice environment, ed. P.L. Pingali and P.A. Roger, 249–270. Philippines: IRRI Editions.CrossRefGoogle Scholar
  55. Singh, D., and C.K. Gill. 1979. Estimation of losses in growth and yield of muskmelon due to Aulacophora foveicollis Lucas. Indian Journal of Entomology 44: 294–295.Google Scholar
  56. Singh, S., A. Ranjit, S. Parthasarathy, N. Sharma, and P. Bambery. 2004. Organophosphate induced delayed neuropathy: Report of two cases. Neurology India 52: 525–526.Google Scholar
  57. Sinha, S.N., and A.K. Chakrabarti. 1983. Effect of seed treatment with carbofuran on the incidence of red pumpkin beetle, Raphidopalpa foveicollis Lucas on cucurbits. Indian Journal of Entomology 45: 145–151.Google Scholar
  58. Skripsky, T., and R. Loosli. 1994. Toxicology of monocrotophos. Reviews of Environmental Contamination and Toxicology 139: 13–39.Google Scholar
  59. Stanley-Samuelson, D.W., R.A. Jurenka, C. Crips, G.J. Blomquist, and M. de Renobales. 1988. Fatty acids in insects: composition, metabolism and biological significance. Archives of Insect Biochemistry and Physiology 9: 1–33.CrossRefGoogle Scholar
  60. Tariq, M.I., S. Afzal, and I. Hussain. 2004. Pesticides in shallow groundwater of Bahawalnagar, Muzafargarh, D.G. Khan and Rajan Pur districts of Punjab, Pakistan. Environment International 30: 471–479.CrossRefGoogle Scholar
  61. Velmurugan, B., M. Selvanayagam, E.I. Cengiz, and E. Unlu. 2007. The effects of monocrotophos to different tissues of freshwater fish Cirrhinus mrigala. Bulletin of Environmental Contamination and Toxicology 78: 450–454.CrossRefGoogle Scholar
  62. Vijay Kumar, B., and N.V. Prasad. 2013. Effect of the pesticide monocrotophos on the osmoregulation of a brackish water oligochaete, Pontodrilus bermudensis (Beddard) in relation to salinity variations. International Journal of Bioassays 2: 964–970.Google Scholar
  63. Vijayavel, K., E.F. Rani, C. Anbuselvam, and M.P. Balasubramanian. 2006. Interactive effect of monocrotophos and ammonium chloride on the freshwater fish Oreochromis mossambicus with reference to lactate/pyruvate ratio. Pesticide Biochemistry and Physiology 86: 157–161.CrossRefGoogle Scholar
  64. Waterhouse, D.F., and K.R. Norris. 1987. Biological Control: Pacific Prospects. Melbourne: Inkata Press.Google Scholar
  65. WHO 2009. Health implications from monocrotophos use: a review of the evidence in India.Google Scholar
  66. Wu, Y., J. Shen, J. Chen, X. Lin, and A. Li. 1996. Evaluation of two resistance monitoring methods in Helicoverpa armigera: Topical application and leaf dipping method. Journal of Plant Protection 22: 3–6.Google Scholar
  67. Wu, Y., J. Shen, F. Tan, and Z. You. 1995. Mechanism of fenvalerate resistance in Helicoverpa armigera (Hübner). Journal of Nanjing Agricultural University 18: 63–68.Google Scholar
  68. Yen, C.-L.E., S.J. Stone, S. Koliwad, C. Harris, and R.V. Farese Jr. 2008. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. Journal of Lipid Research 49: 2283–2301.CrossRefGoogle Scholar
  69. Zar, J.H. 2010. Biostatistical Analysis. New Jersey: Prentice Hall.Google Scholar

Copyright information

© Zoological Society, Kolkata, India 2018

Authors and Affiliations

  • Amarnath Karmakar
    • 1
  • Saubhik Mitra
    • 1
  • Abhishek Mukherjee
    • 1
  • Anandamay Barik
    • 1
    Email author
  1. 1.Ecology Research Laboratory, Department of ZoologyThe University of BurdwanBurdwanIndia

Personalised recommendations