Proceedings of the Zoological Society

, Volume 71, Issue 4, pp 313–319 | Cite as

Antibacterial Activity of Long-Chain Primary Alcohols from Solena amplexicaulis Leaves

  • Soumendranath Chatterjee
  • Amarnath Karmakar
  • Syed Afrin Azmi
  • Anandamay BarikEmail author
Research Article


Extraction, thin layer chromatography and gas chromatography–mass spectrometry of Solena amplexicaulis (Lam.) Gandhi, commonly known as creeping cucumber, (Cucurbitaceae) leaves revealed 21 long-chain primary alcohols, and 100 g leaves indicated presence of 3651.59 ± 327.18 SE µg long-chain primary alcohols. 1-Heptadecanol and 1-triacontanol were the predominant and least abundant primary alcohols, representing for 780.44 ± 42.59 and 3.28 ± 0.55 SE μg, respectively. Antibacterial property of the complete synthetic blend (0.1%), comparable to long-chain alcohols as detected by GC-FID of 100 g S. amplexicaulis leaf extracts was evaluated on the pathogenic bacteria Salmonella gallinarum by agar well diffusion method, and exhibited 20.4, 26.7 and 38.2 mm zone of inhibition at 25, 50 and 100 μl doses, respectively. One hundred µl dose of 6 individual pure synthetic compounds, 1-tridecanol, 1-pentadecanol, 1-heptadecanol, 1-nonadecanol, 1-eicosanol and 1-tricosanol comparable to the amounts present in 0.1% solution of pure isolated alcohols from S. amplexicaulis leaves displayed 16.2, 17.7, 18.6, 22.8, 15.8 and 14.5 mm zone of inhibition against this bacterium, respectively. Hundred µl dose from a synthetic blend of above 6 compounds (comparable to the proportions as present in 0.1% solution of pure isolated alcohols from 100 g S. amplexicaulis leaves) exhibited 38.1 mm zone of inhibition against this bacterium. Furthermore, 100 μl dose from a mixture (1:1) comprising of chloramphenicol (1 µg/ml) and a synthetic blend of above 6 compounds displayed 38.8 mm inhibition zone against S. gallinarum, and hence, this combination might be used against this pathogenic bacteria.


Solena amplexicaulis Long-chain primary alcohols 1-Pentadecanol 1-Heptadecanol 1-Nonadecanol 1-Eicosanol 1-Tricosanol Antibacterial activity Salmonella gallinarum 



The financial assistance from West Bengal Department of Science and Technology (WB-DST) [Sanction No. 889 (Sanc.)/ST/P/S&T/2G-6/2013], India is gratefully acknowledged.


  1. Adhikary, P., A. Mukherjee, and A. Barik. 2015. Attraction of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) to four varieties of Lathyrus sativus L. seed volatiles. Bulletin of Entomological Research 105: 187–201.CrossRefPubMedGoogle Scholar
  2. Arun, C.H., R.S. Kumar, S. Srinu, G.L. Babu, G.R. Kumar, and J.A. Babu. 2011. Anti-inflammatory activity of aqueous extract of leaves of Solena amplexicaulis. International Journal of Research in Pharmaceutical and Biomedical Sciences 2: 1617–1619.Google Scholar
  3. Bhattacharjee, I., S.K. Chatterjee, S.N. Chatterjee, and G. Chandra. 2006. Antibacterial potentiality of Argemone mexicana solvent extracts against some pathogenic bacteria. Memórias do Instituto Oswaldo Cruz 101: 645–648.CrossRefPubMedGoogle Scholar
  4. Chattopadhyay, R.R., S.K. Bhattacharyya, C. Medda, S. Chanda, and A. Bag. 2009. A comparative evaluation of antibacterial potential of some plants used in Indian traditional medicine for the treatment of microbial infections. Brazilian Archives of Biology and Technology 52: 1123–1128.CrossRefGoogle Scholar
  5. Clinical and Laboratory Standards Institute. 2009. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 8th ed. Wayne: Clinical and Laboratory Standards Institute.Google Scholar
  6. Dengle-Pulate, V., S. Bhagwat, and A. Prabhune. 2013. Microbial oxidation of medium chain fatty alcohol in the synthesis of sophorolipids by Candida bombicola and its physicochemical characterization. Journal of Surfactants and Detergents 16: 173–181.CrossRefGoogle Scholar
  7. Hattori, M., K. Miyachi, S. Hada, N. Kakiuchi, F. Kiuchi, Y. Tsuda, and T. Namba. 1987. Effects of long-chain fatty acids and fatty alcohols on the growth of Streptococcus mutans. Chemical & Pharmaceutical Bulletin 35: 3507–3510.CrossRefGoogle Scholar
  8. Kabelitz, N., P.M. Santos, and H.J. Heipieper. 2003. Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus. FEMS Microbiology Letters 220: 223–227.CrossRefPubMedGoogle Scholar
  9. Kabir, M.G., M.M. Rahman, N.U. Ahmed, M. Fakruddin, S. Islam, and R.M. Mazumdar. 2014. Antioxidant, antimicrobial, toxicity and analgesic properties of ethanol extract of Solena amplexicaulis root. Biological Research. doi: 10.1186/0717-6287-47-36.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Karmakar, A., A. Mukherjee, and A. Barik. 2016a. Floral volatiles with colour cues from two cucurbitaceous plants causing attraction of Aulacophora foveicollis. Entomologia Experimentalis et Applicata 158: 133–141.CrossRefGoogle Scholar
  11. Karmakar, A., U. Malik, and A. Barik. 2016b. Effects of leaf epicuticular wax compounds from Solena amplexicaulis (Lam.) Gandhi on olfactory responses of a generalist insect herbivore. Allelopathy Journal 37: 253–272.Google Scholar
  12. Karmakar, A., and A. Barik. 2016. Solena amplexicaulis (Cucurbitaceae) flower surface wax influencing attraction of a generalist insect herbivore, Aulacophora foveicollis (Coleoptera: Chrysomelidae). International Journal of Tropical Insect Science 36: 70–81.CrossRefGoogle Scholar
  13. Karthika, K., and S. Paulsamy. 2012. Antibacterial potential of traditional plant species Solena amplexicaulis (Lam.) Gandhi against certain human pathogens. Asian Journal of Pharmaceutical and Clinical Research 5: 255–257.Google Scholar
  14. Karthika, K., and S. Paulsamy. 2014. Phytochemical profiling of leaf, stem, and tuber parts of Solena amplexicaulis (Lam.) Gandhi using GC–MS. International Scholarly Research Notices. doi: 10.1155/2014/567409.CrossRefGoogle Scholar
  15. Karthika, K., S. Paulsamy, and S. Jamuna. 2012. Evaluation of in vitro antioxidant potential of methanolic leaf and stem extracts of Solena amplexicaulis (Lam.) Gandhi. Journal of Chemical and Pharmaceutical Research 4: 3254–3258.Google Scholar
  16. Kato, N., and I. Shibasaki. 1980. The antimicrobial characteristics of 1-alkanols. Journal of Antibacterial and Antifungal Agents 8: 325–331.Google Scholar
  17. Kirtikar, K.R., and B.D. Basu. 1988. Indian Medicinal Plants Vol–II, 3rd ed. Dehradun: International book distributor.Google Scholar
  18. Kubo, I., H. Muroi, and A. Kubo. 1993a. Antibacterial activity of long-chain alcohol against Streptococcus mutans. Journal of Agricultural and Food Chemistry 41: 2447–2450.CrossRefGoogle Scholar
  19. Kubo, I., H. Muroi, H. Masaki, and A. Kubo. 1993b. Antibacterial activity of long-chain alcohols: the role of hydrophobic alkyl groups. Bioorganic & Medicinal Chemistry Letters 3: 1305–1308.CrossRefGoogle Scholar
  20. Mates, A. 1974. The effect of alcohols on growth and lipase formation by Staphylococcus aureus. Journal of Applied Bacteriology 37: 1–6.CrossRefPubMedGoogle Scholar
  21. Mbosso, E.J.T., S. Ngouela, J.C. Nguedia, V.P. Beng, M. Rohmer, and E. Tsamo. 2010. In vitro antimicrobial activity of extracts and compounds of some selected medicinal plants from Cameroon. Journal of Ethnopharmacology 128: 476–481.CrossRefPubMedGoogle Scholar
  22. McDonnell, G., and A.D. Russell. 1999. Antiseptics and disinfectants: activity, action, and resistance. Clinical Microbiology Reviews 12: 147–179.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mujeeb, F., P. Bajpai, and N. Pathak. 2014. Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. BioMed Research International. doi: 10.1155/2014/497606.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Mukherjee, A., and A. Barik. 2016. Long–chain primary alcohols in Momordica cochinchinensis Spreng leaf surface waxes. Botany Letters 163: 61–66.Google Scholar
  25. Mukherjee, K., P. Tribedi, B. Mukhopadhyay, and A.K. Sil. 2013. Antibacterial activity of long-chain fatty alcohols against mycobacteria. FEMS Microbiology Letters 338: 177–183.CrossRefPubMedGoogle Scholar
  26. Nagarani, G., A. Abirami, and P. Siddhuraju. 2014. Food prospects and nutraceutical attributes of Momordica species: a potential tropical bioresources—A review. Food Science and Human Wellness 3: 117–126.CrossRefGoogle Scholar
  27. Parameshwar, H., Y. Narsimha Reddy, B. Ravi Kumar, and G. Krishna Mohan. 2010. Hepatoprotective effect of Solena amplexicaulis (tuber) on acute carbon tetrachloride induced hepatotoxicity. International Journal of Pharmacy and Technology 2: 375–384.Google Scholar
  28. Perez, C., M. Pauli, and P. Bazerque. 1990. An antibiotic assay by the agar-well diffusion method. Acta Biologiae et Medicinae Experimentalis 15: 113–115.Google Scholar
  29. Sarkar, N., A. Mukherjee, and A. Barik. 2015. Attraction of Epilachna dodecastigma (Coleoptera: Coccinellidae) to Momordica charantia (Cucurbitaceae) leaf volatiles. The Canadian Entomologist 147: 169–180.CrossRefGoogle Scholar
  30. Sarkar, N., A. Karmakar, and A. Barik. 2016. Volatiles of Solena amplexicaulis (Lam.) Gandhi leaves influencing attraction of two generalist insect herbivores. Journal of Chemical Ecology 42: 1004–1015.CrossRefPubMedGoogle Scholar
  31. Tanaka, Y., S. Fukuda, H. Kikuzaki, and N. Nakatani. 2002. Antibacterial activity of aliphatic long-chain compounds against upper-airway respiratory tract bacteria. ITE Letters on Batteries New Technologies & Medicine 1: 777–780.Google Scholar
  32. Togashi, N., A. Shiraishi, M. Nishizaka, K. Matsuoka, K. Endo, H. Hamashima, and Y. Inoue. 2007. Antibacterial activity of long-chain fatty alcohols against Staphylococcus aureus. Molecules 12: 139–148.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Venkateshwarlu, E., A. Raghuram Reddy, P. Goverdhan, K. Swapna Rani, and G. Jayapal Reddy. 2011. In vitro and in vivo antioxidant activity of methanolic extract of Solena amplexicaulis (whole plant). International Journal of Pharmacy and Biological Sciences 1: 522–533.Google Scholar
  34. Yildirim, A.B., F.P. Karakas, and A.U. Turker. 2013. In vitro antibacterial and antitumor activities of some medicinal plant extracts, growing in Turkey. Asian Pacific Journal of Tropical Medicine 6: 616–624.CrossRefPubMedGoogle Scholar
  35. Zhang, L., A.S. Ravipati, S.R. Koyyalamudi, S.C. Jeong, N. Reddy, J. Bartlett, P.T. Smith, M. de la Cruz, M.C. Monteiro, A. Melguizo, E. Jimenez, and F. Vicente. 2013. Anti-fungal and anti-bacterial activities of ethanol extracts of selected traditional Chinese medicinal herbs. Asian Pacific Journal of Tropical Medicine 6: 673–681.CrossRefPubMedGoogle Scholar

Copyright information

© Zoological Society, Kolkata, India 2017

Authors and Affiliations

  • Soumendranath Chatterjee
    • 1
  • Amarnath Karmakar
    • 2
  • Syed Afrin Azmi
    • 1
  • Anandamay Barik
    • 2
    Email author
  1. 1.Parasitiology and Microbiology Research Laboratory, Department of ZoologyThe University of BurdwanBurdwanIndia
  2. 2.Ecology Research Laboratory, Department of ZoologyThe University of BurdwanBurdwanIndia

Personalised recommendations