Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Potential Use of Airborne Hyperspectral AVIRIS-NG Data for Mapping Proterozoic Metasediments in Banswara, India

  • 9 Accesses

Abstract

Airborne Visible InfraRed Imaging Spectrometer — Next Generation (AVIRIS-NG) data with high spectral and spatial resolutions are used for mapping metasediments in parts of Banswara district, Rajasthan, India. The AVIRIS—NG image spectra of major metasedimentary rocks were compared with their respective laboratory spectra to identify few diagnostic spectral features or absorption features of the rocks. These spectral features were translated from laboratory to image and consistently present in the image spectra of these rocks across the area. After ensuring the persistency of absorption features from sample to image pixels, three AVIRIS—NG based spectral indices is proposed to delineate calcareous (dolomite), siliceous (quartzite) and argillaceous (phyllite) metasedimentary rocks. The index image composite was compared with the reference lithological map of Geological Survey of India and also was validated in the field. The study demonstrates the efficiency of AVIRIS — NG data for mapping metasedimentary units from the Aravalli Supergroup that are known to host strata bound mineral deposits.

This is a preview of subscription content, log in to check access.

References

  1. ASD (2015) Analytical Spectrum Device Inc., https://www.asdi.com/products-and-services/fieldspec-spectroradiometers (visited on 15-03-2015).

  2. Bedini, E. (2011) Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data. Adv. in Space Res., v.47(1), pp.60–73.

  3. Banerjee, D.M. (1971).Precambrian stromatolitic phosphorites of Udaipur, Rajasthan, India. Geol. Soc. Amer. Bull., v.82(8), pp.2319–2330.

  4. Baugh, W.M., Kruse, F.A. and Atkinson Jr., W.W. (1998) Quantitative geochemical mapping of ammonium minerals in the southern Cedar Mountains, Nevada, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing Environ., v.65(3), pp.292–308.

  5. Bhattacharya, S., Kumar, H., Guha, A., Dagar, A.K., Pathak, S., Rani, K., Mondal, S., Kumar, K.V., Farrand, W., Chatterjee, S. and Ravi, S. (2019) Potential of airborne hyperspectral data for geo-exploration over parts of different geological/metallogenic provinces in India based on AVIRIS-NG observations. Curr. Sci., v.116(7), pp.1143–1156.

  6. Boardman, J.W., Kruse, F.A. and Green, R.O. (1995) Mapping target signatures via partial unmixing of AVIRIS data: in Summaries, Fifth JPL Airborne Earth Science Workshop, JPL Publication 95–1, v.1, pp. 23–26.

  7. Boardman J.W. and Kruse, F.A. (1994) Automated spectral analysis: A geologic example using AVIRIS data, north Grapevine Mountains, Nevada: in Proceedings, Tenth Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan, Ann Arbor, MI, pp. 1407–1418.

  8. Clark, R.N. (1999) Spectroscopy of rocks and minerals, and principles of spectroscopy. Manual of remote sensing, v.3(3–58), pp.2–2.

  9. Clark, R.N., Swayze, G.A., Livo, K.E., Kokaly, R.F., Sutley, S.J., Dalton, J.B., McDougal, R.R. and Gent, C.A. (2003) Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. Jour. Geophys. Res.: Planets, 108(E12).

  10. Congalton, R.G. (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing Environ., v.37(1), pp.35–46.

  11. Choudhuri, R., Roy, A.B., Cook, P.J. and Shergold, J.H. (1986) Proterozoic and Cambrian phosphorites deposits: Jhamarkotra, Rajasthan, India. Proterozoic and Cambrian Phosphorite. Cambridge Univ. Press, Cambridge, pp.209–210.

  12. Comber, A., Fisher, P., Brunsdon, C. and Khmag, A. (2012) Spatial analysis of remote sensing image classification accuracy. Remote Sensing Environ., v.127, pp.237–246.

  13. Cooley, T., Anderson, G.P., Felde, G.W., Hoke, M.L., Ratkowski, A.J., Chetwynd, J.H., Gardner, J.A., Adler-Golden, S.M., Matthew, M.W., Berk, A., Bernstein, L.S., Acharya, P.K., Miller, D. and Lewis, P. (2002) FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In Geoscience and Remote Sensing Symposium, 2002. IGARSS’02. 2002 IEEE Internat., v.3, pp.1414–1418).

  14. Crosta, A.P., Sabine, C. and Taranik, J.V. (1998) Hydrothermal alteration mapping at Bodie, California, using AVIRIS hyperspectral data. Remote Sensing Environ., v.65(3), pp.309–319.

  15. Crowley, J.K. (1993) Mapping playa evaporate minerals with AVIRIS data: A first report from Death Valley, California. Remote Sensing Environ., v.44(2–3), pp.337–356.

  16. Deb, M., and Bhattacharya, A. K. (1980). Geological setting and conditions of metamorphism of Rajpura-Dariba polymetallic ore deposit, Rajasthan, India. In: Proceedings ofthe 5th IAGOD Symposium, Scheweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp.679–697.

  17. Farrand, W.H., (1997) Identification and mapping of ferric oxide and oxyhydroxide minerals in imaging spectrometer data of Summitville, Colorado, USA, and the surrounding San Juan Mountains. Internat. Jour. Remote Sensing, v.18(7), pp.1543–1552.

  18. Fatima, K., Khattak, M.U.K., Kausar, A.B., Toqeer, M., Haider, N. and Rehman, A.U. (2017). Minerals identification and mapping using ASTER satellite image. Jour. Appld. Remote Sensing, v.11(4), 046006.

  19. Felde, G.W., Anderson, G.P., Cooley, T.W., Matthew, M.W., Adler-Golden, S.M., Berk, A., and Lee, J. (2003) Analysis of Hyperion data with the FLAASH atmospheric correction algorithm. In Geoscience and Remote Sensing Symposium, IGARSS’03 Proceedings. 2003 IEEE Internat., v.1, pp.90–92.

  20. Gad, S. and Kusky, T. (2007) ASTER spectral ratioing for lithological mapping in the Arabian-Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Res., v.11(3), pp.326–335.

  21. Gaffey, S.J. (1986) Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 microns); calcite, aragonite, and dolomite. American Mineral., v.71(1–2), pp.151–162.

  22. Goetz, A.F., Vane, G., Solomon, J.E. and Rock, B.N.(1985) Imaging spectrometry for earth remote sensing. Science, v.228(4704), pp.1147–1153.

  23. Govil, H., Tripathi, M. K., Diwan, P., Guha, S., and Monika (2018) Identification of Iron Oxides Minerals In Western Jahajpur region, India using AVIRIS-NG hyperspectral remote sensing, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-5, 233–237, https://doi.org/10.5194/isprs-archives-XLII-5-233-2018.

  24. Guha, A., Chakraborty, D., Ekka, A.B., Pramanik, K., Kumar, K.V., Chatterjee, S., Subramanium, S. and Rao, D.A. (2012) Spectroscopic study of rocks of Hutti-Maski schist belt, Karnataka. Jour. Geol. Soc. India, v.79(4), pp.335–344.

  25. Guha, A., Vinod Kumar K., Porwal A., Rani K., Singaraju V., Singh R.P. (2018) Reflectance spectroscopy and ASTER based mapping of rock-phosphate in parts of Paleoproterozoic sequences of Aravalli Group of rocks, Rajasthan, India. Ore Geol. Rev., DOI: https://doi.org/10.1016/j.oregeorev.2018.02.021.

  26. Guha, A., Kumar, K.V., Porwal, A., Rani, K., Sahoo, K.C., Kumar, S.A., Singaraju, V., Singh, R.P., Khandelwal, M.K., Raju, P.V. and Diwakar, P.G. (2019) Reflectance spectroscopy and ASTER based mapping of rockphosphate in parts of Paleoproterozoic sequences of Aravalli Group of rocks, Rajasthan, India. Ore Geol. Rev., v.108, pp.73–87.

  27. Green, A. A., Berman, M., Switzer, P. and Craig, M. D. (1988) A transformation for ordering multispectral data in terms of image quality with implications for noise removal: IEEE Trans. Geoscience and Remote Sensing, v.26(1), pp.65–74.

  28. Gupta, S., Golani, P.R., Kirmani, I.R., and Chander, S. (2010) Tourmaline as metallogenic indicator: Examples from paleo-proterozoic Pb-Zn and Cu-Au deposits of Rajasthan. Jour. Geol. Soc. India, v.76(3), pp.215–243.

  29. Jain, R. and Sharma, R.U. (2018) Mapping of Mineral Zones using the Spectral Feature Fitting Method in Jahazpur belt, Rajasthan, India. Internat. Res. Jour. Engg. Tech., (IRJET), v.5, pp.562–567.

  30. Kalinowski, A. and Oliver, S. (2004) ASTER mineral index processing manual. Remote Sensing Applications, Geoscience Australia, v.37, pp.36.

  31. Kratt, C., Calvin, W.M. and Coolbaugh, M.F. (2010) Mineral mapping in the Pyramid Lake basin: Hydrothermal alteration, chemical precipitates and geothermal energy potential. Remote Sensing Environ., 114(10), pp.2297–2304.

  32. Kruse, F.A., Lefkoff, A.B. and Dietz, J.B. (1993) Expert system-based mineral mapping in northern Death Valley, California/Nevada, using the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sensing Environ., v.44(2–3), pp.309–336.

  33. Kruse, F. A., Perry, S. L., and Caballero, A. (2002) Integrated multispectral and hyperspectral mineral mapping, Los Menucos, Rio Negro, Argentina, Part II: EO-1 Hyperion/AVIRIS comparisons and Landsat TM/ASTER extensions. In: Proc. 11th JPL Airborne Geoscience Workshop. Jet Propulsion Laboratory, Pasadena, California.

  34. Kruse, F.A., Boardman, J.W. and Huntington, J.F. (2003) Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans. Geoscience and Remote Sensing, v.41(6), pp.1388–1400.

  35. Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B.-C., Li, R.-R., and Flynn, L. (1997) The MODIS 2.1-ìm Channel-Correlation with Visible Reflectance for Use in Remote Sensing of Aerosol. IEEE Trans. Geoscience and Remote Sensing. v.35, pp.1286–1298.

  36. Lillesand, T., Kiefer, R.W. and Chipman, J. (2014) Remote sensing and image interpretation. John Wiley & Sons.

  37. Matthew, M.W., Adler-Golden, S.M., Berk, A., Richtsmeier, S.C., Levine, R.Y., Bernstein, L.S., Acharya, P.K., Anderson, G.P., Felde, G.W., Hoke, M.L., Ratkowski, A.J., Burke, H. K., Kaiser R. D., Miller D.V., (2000, August). Status of atmospheric correction using a MODTRAN4-based algorithm. In: Algorithms for multispectral, hyperspectral, and ultraspectral imagery VI (Vol. 4049, pp.199–208).International Society for Optics and Photonics.

  38. Milton, E.J., Schaepman, M.E., Anderson, K., Kneubühler, M. and Fox, N. (2009) Progress in field spectroscopy. Remote Sensing Environ., v.113, pp.S92–S109.

  39. Mukherjee, A.D. (1988) Metallogeny and controls of mineralisation in Aravalli mountain belt. Mem. Geol. Soc. India, no.7, pp.351–362.

  40. Mukherjee, R. and Venkatesh, A.S. (2017) Chemistry of magnetite-apatite from albitite and carbonate-hosted Bhukia Gold Deposit, Rajasthan, western India-An IOCG-IOA analogue from Paleoproterozoic Aravalli Supergroup: Evidence from petrographic, LA-ICP-MS and EPMA studies. Ore Geol. Rev., v.91, pp.509–529.

  41. NASA, 2018, https://aviris-ng.jpl.nasa.gov/data.html

  42. Price, J.C., 1995. Examples of high resolution visible to near-infrared reflectance spectra and a standardized collection for remote sensing studies. Remote Sensing, v.16(6), pp.993–1000.

  43. Rani, K., Guha, A., Mondal, S., Pal, S.K., and Kumar, K.V. (2019) ASTER multispectral bands, ground magnetic data, ground spectroscopy and space-based EIGEN6C4 gravity data model for identifying potential zones for gold sulphide mineralization in Bhukia, Rajasthan, India. Jour. Appld. Geophys., v.160, pp.28–46.

  44. Rowan, L.C. and Mars, J.C. (2003) Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sensing Environ., v.84(3), pp.350–366.

  45. Roy, A.B. and Paliwal, B.S. (1981) Evolution of lower Proterozoic epicontinental deposits: Stromatolite-bearing Aravalli rocks of Udaipur, Rajasthan, India. Precambrian Res., v.14(1), pp.49–74.

  46. Roy, A.B. and Jakhar, S.R., 2002. Geology of Rajasthan (Northwest India) precambrian to recent. Scientific Publishers.

  47. Shaif, M., Siddiquie, F.N. and Mukhopadhyay, S. (2017) Petrographic Characteristics of Manganese Bearing Rocks of Banswara Manganese Ores Belt, District Banswara, Rajasthan (India). Open Jour. Geol., v.7(07), pp.1047.

  48. Story, M. and Congalton, R.G. (1986) Accuracy assessment: a user’s perspective. Photogrammetric Engg. Remote Sensing, v.52(3), pp.397–399.

  49. Thorpe, A.K., Frankenberg, C., Aubrey, A.D., Roberts, D.A., Nottrott, A.A., Rahn, T.A., Sauer, J.A., Dubey, M.K., Costigan, K.R., Arata, C., and Steffke, A.M., Hills, S., Haselwimmer, C., Charlesworth, D., Funk, C.C., Green, R.O., Lundeen S.R., Boardman, J.W., Eastwood, M.L., Sarture, C.M., Nolte, S.H., Mccubbin, I.B., Thompson, D.R. and McFadden, J.P. (2016) Mapping methane concentrations from a controlled release experiment using the next generation airborne visible/infrared imaging spectrometer (AVIRIS-NG). Remote Sensing Environ., v.179, pp.104–115.

  50. Yamaguchi, Y. and Naito, C. (2003) Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands. Internat. Jour. Remote Sensing, v.24(22), pp.4311–4323.

  51. Van der Meer, F.D., Van der Werff, H.M., Van Ruitenbeek, F.J., Hecker, C.A., Bakker, W.H., Noomen, M.F., Van Der Meijde, M., Carranza, E.J.M., De Smeth, J.B. and Woldai, T. (2012) Multi-and hyperspectral geologic remote sensing: A review. Internat. Jour. Appld. Earth Observation and Geoinformation, v.14(1), pp.112–128.

Download references

Author information

Correspondence to Komal Rani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rani, K., Guha, A., Kumar, K.V. et al. Potential Use of Airborne Hyperspectral AVIRIS-NG Data for Mapping Proterozoic Metasediments in Banswara, India. J Geol Soc India 95, 152–158 (2020). https://doi.org/10.1007/s12594-020-1404-5

Download citation