Advertisement

Journal of the Geological Society of India

, Volume 94, Issue 3, pp 319–327 | Cite as

Effect of Kerogen and TOC on Seismic Characterization of Lower Cretaceous Shale Gas Plays in Lower Indus Basin, Pakistan

  • Perveiz KhalidEmail author
  • Jahanzeb Qureshi
  • Zia Ud Din
  • Sami Ullah
  • Javed Sami
Research Articles
  • 12 Downloads

Abstract

Unconventional energy resources such as shale gas are becoming an increasingly important exploration and production targets. Organic-rich shales are widely distributed in the sedimentary basins of Pakistan. Among these shales, organic-rich Sembar shale of the lower Cretaceous age is a strong potential shale gas play in the lower Indus basin of Pakistan. However, seismic and petrophysical characterization of this organic-rich shale is not well understood because of the complex dependency of the seismic and petrophysical properties of these rocks on mineralogical, heterogeneities, organic matter, clay content and thermal maturity. Therefore, to understand the seismic and elastic character of Sembar shales, rock physics modeling and seismic attribute analysis have been done. The results reveal that in-situ mineral composition, total organic content (TOC) and thermal maturity can influence significantly in inverse order to the seismic and elastic parameters of organic-rich shale. This work will facilitate the workers to interpret shale gas play and develop the exploration and production strategies for gas exploration and production.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, N., Mateen, J., Shehzad, K., Mehmood, N., and Arif, F. (2013) Shale gas potential of lower Cretaceous Sembar Formation in middle and lower Indus basin, Pakistan. Pakistan Jour. Hydrocarbon Res., v.22-23, pp.51–62.Google Scholar
  2. Arogundade, O. and Sohrabi, M. (2012) A review of recent development sand challenges in shale gas recovery. SPE Saudi Arabia Section Technical Symposium and Exhibition, 8–11 April Al-Khobar, Saudi Arabia.Google Scholar
  3. Alexander, T., Baihly, J., Boyer, C., Clark, B., Waters, G., Jochen, V., Calvez, J.L., Lewis, R., Miller, C.K., Thaeler, J., and Toelle, B.E. (2011) Shale gas revolution: Oilfield Review Autumn, Schlumberger, v.23, pp.40–55.Google Scholar
  4. Arbogast, J.S. and Utley, L. (2003) Extracting Hidden Details from Mixed — vintage Log Data Using Automatic, High — speed Inversion Modeling of Resistivity and SP Logs: Supplementing Incomplete Log Suites and Editing Poor Quality Log Data Using Neural Networks. AAPG Annual Convention.Google Scholar
  5. Azeem, T., Chun, W.Y., Lisa, M., Khalid, P., Qing, L.X., Ehsan, M.I., Munawar, M.J., and Wei, X. (2017) An integrated petrophysical and rock physics analysis to improve reservoir characterization of Cretaceous sand intervals in Middle Indus Basin, Pakistan. Jour. Geophys. Engg., v.14, pp.212–225, DOI: https://doi.org/10.1088/1742-2140/14/2/212.CrossRefGoogle Scholar
  6. Jun-Yu, B., Zhi-Xiang, S., Ling, S.U., Wen-Guang, Y., Ling-Yan, Z., Shi-Jie, L. (2012) Error analysis of shear-velocity prediction by the Xu-White model. Chinese Jour. Geophys., v.55, pp.589–95.Google Scholar
  7. Baban, D.H., Ahmed, S.M. (2014) Vitrinite reflectance as a tool for determining level of thermal maturity for the Upper Jurassic Naokelekan and Barsarin Formations in Sargelu location, Kurdistan Region, NE Iraq. Arab Jour. Geosci., v.7, pp.2269–2277.CrossRefGoogle Scholar
  8. Behar, F., Vandenbroucke, M., Tang, Y., Marquis, F., Espitalié, J. (1997) Thermal cracking of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefûcients for oil and gas generation. Organic Geochemistry, v.26, pp.321–339.CrossRefGoogle Scholar
  9. Boyer, C., Kieschnick, J., Rivera, R.S., Lewis, R.E., Waters, G. (2006) Producing Gas from Its Source, Schlumberger Oilfield Rev., v.7, pp.36–49.Google Scholar
  10. Carcione, J.M., Helle, H.B., Avseth, P. (2011) Source-rock seismic-velocity models: Gassmann versus Backus. Geophysics, v.76(5), pp.N37–N45.CrossRefGoogle Scholar
  11. Carcione, J.M. (2001) AVO effects of a hydrocarbon source rock layer. Geophysics, v.66, pp.2419–427.Google Scholar
  12. Castagna, J.P., Batzle, M.L., and Eastwood, R.L. (1985) Relationship between compressional-wave and shear — wave velocities in clastic silicate rocks. Geophysics, v.50, pp.571–581.CrossRefGoogle Scholar
  13. Chatterjee, R., Singha, D., Ojha, M., Sen, M. K. and Sain, K. (2016) Porosity estimation from pre-stack seismic data in gas-hydrate bearing sediments, Krishna-Godavari basin, India. Jour. Natural Gas Sci. Engg., v.33, pp.562–572.CrossRefGoogle Scholar
  14. Chen, H.Z., Yin, X.Y., Gao, C.G. (2011) AVAZ inversion for fluid factor based on fracture anisotropic rock physics theory. Chinese Jour. Geophys., v.57(3), pp968–978.Google Scholar
  15. Chopra, S., Sharma, R.K., and Marfurt, K.J. (2012) Shale gas reservoir characterization workflows. Las Vegas. Annual Meeting SEG, v.5, pp.1–5.Google Scholar
  16. Curtis, J.B. (2002) Fractured shale gas systems: AAPG Bull., v.86, pp.1921–1938.Google Scholar
  17. Das, B., Chatterjee, R., Singha, D.K. and Kumar, R. (2017) Post-stack Seismic Inversion and Attribute Analysis in Shallow Offshore of Krishna-Godavari Basin, India. Jour. Geol. Soc. India, v.90, pp.32–40.CrossRefGoogle Scholar
  18. Das, B. and Chatterjee, R. (2018) Well log Data Analysis for Lithology and Fluid Identification in Krishna-Godavari Basin, India. Arabian Jour. Geosci., v.11, pp.231–242.CrossRefGoogle Scholar
  19. Das, P.S., Chatterjee, R., Dasgupta, S., Das, R., Bakshi, D. and Gupta, M. (2018) Quantification and spatial distribution of pore-filling materials through constrained rock physics template and fluid response modelling in Paleogene clastic reservoir from Cauvery basin, India. Geophys. Prospect., v.67, pp.150–166.CrossRefGoogle Scholar
  20. Davis, C. (2012) The politics of “Fracking”: regulating natural gas drilling practices in Colorado and Texas. Review of Policy Res., v.29, pp.177–191.CrossRefGoogle Scholar
  21. Dewhurst, D.N., Siggins, A.F., Sarout, J., Raven, M.D., and Nordgård-Bolås, H.M. (2011) Geomechanical and ultrasonic characterization of a Norwegian Sea shale. Geophysics, v.76, pp.WA101–W11.CrossRefGoogle Scholar
  22. EIA (2013) World shale gas and shale oil resources assessment report. Energy Conference U.S.Google Scholar
  23. Fertl, W.H. (1976) Abnormal Formation Pressures. Elsevier Science Publishing Company Inc., New York ISBN 0-444-41328 Excellent coverage, pp.382.Google Scholar
  24. Glorioso, J.C., Ralttia, A., and Repsol (2012) Unconventional Reservoirs: Basic Petrophysical Concepts for Shale Gas: European Unconventional Resources. Conference Vienna, Austria, SPE/EAGE: pp.1-38.Google Scholar
  25. Guo, Z., Li, X., Ren, Y., Chapman, M. and Shen, Y. (2013) A rock physics workflow for the modeling of the effect of kerogen content and maturity level in shales. Houston Annual Meeting, SEG 5, pp.2948-2952.Google Scholar
  26. Haider, B.A., Aizad, T., Ayaz, S.A., and Shoukry, A. (2012) A comprehensive shale gas exploration sequence for Pakistan and other emerging shale plays. SPE/PAPG Annual Technical Conference v.10, pp.401–408.Google Scholar
  27. Harilal, and Tandon, A.K. (2012) Unconventional shale gas plays and their characterization through 3D seismic attributes and logs: 9th Biennial International Conference & Exposition on Petroleum Geophysics, SPG India.Google Scholar
  28. Holditch, S.A. (2006) Tight gas sands. JPT, v.58, pp.86–93. SPE 103356—MS. DOI:  https://doi.org/10.2118/103356-MS.CrossRefGoogle Scholar
  29. Holden, T., Pendrel, J., Jenson, F., and Mesdag, P. (2012) Rock properties for success in shales: JASCON CGG, pp.1-11.Google Scholar
  30. Hood, A., Gutjahar, C.C.M., and Heacock, R.L. (1975) Organic Metamorphism and the Generation of Petroleum. AAPG Bull., v.59, pp.986–996.Google Scholar
  31. Kazmi, A.H., and Jan, M.Q. (1997) Geology and tectonics of Pakistan. Graphic Publishers, 5C- 6/10, Nazimabad, Karachi, 554p.Google Scholar
  32. Khalid, P., Qayyum, F., and Yasin, Q. (2014) Data Driven Sequence Stratigraphy of the Cretaceous Depositional System, Punjab Platform, Pakistan. Surveys in Geophysics, v.35, pp.1065–1088. DOI  https://doi.org/10.1007/s10712-014-9289-8.CrossRefGoogle Scholar
  33. Khalid, P., Yasin, Q., Sohail, G.M.D., and Kashif, J.M. (2015) Integrating core and wireline log data to evaluate porosity of Jurassic formations of Injra-1 and Nuryal-2 wells, western Potwar, Pakistan. Jour. Geol. Soc. India, v.86, pp.553–562, DOI:  https://doi.org/10.1007/s12594-015-0346-9.CrossRefGoogle Scholar
  34. Khalid, P., Ehsan, M.I., Akram, S., Din, Z.U. and Ghazi, S. (2018) Integrated Reservoir Characterization and Petrophysical Analysis of Cretaceous Sands in Lower Indus Basin, Pakistan. Jour. Geol. Soc. India, v.91, pp.736–742, doi: https://doi.org/10.1007/s12594-018-1042-3.CrossRefGoogle Scholar
  35. Kumar, D., and Hoversten, G.M. (2012) Geophysical model response in a shale gas. Geohorizons, v.22, pp.56–58.Google Scholar
  36. Lüning, S., and Kolonic, S. (2003) Uranium spectral gamma-ray response as a proxy for organic-richness in black shales: applicability and limitations. Jour. Pet. Geol., v.22, pp.153–174.CrossRefGoogle Scholar
  37. Lecompte, B., Hursan, G., and Hughes, B. (2010) Quantifying source rock maturity from logs: How to Get More Than TOC From Delta Log R, SPE Annual Technical Conference and Exhibition held in Florence, Italy, 19–22 September.Google Scholar
  38. Li, Y., Guo, Z., Liu, C., Li, X.Y., and Wang, G. (2015) A rock physics model for the characterization of organic-rich shale from elastic properties. Petroleum Science, v.12, pp.264–272.CrossRefGoogle Scholar
  39. Liu, Y., Chen, Z., Hu, K., and Liu, C. (2013) Quantifying total organic carbon (TOC) from well logs using support vector regression: Geo Convention, v.5, pp.1–6.Google Scholar
  40. Lonardelli, I., Wenk, H.R., and Ren, Y. (2007) Preferred orientation and elastic anisotropy in shales. Geophysics, v.72, pp.D33–D40.CrossRefGoogle Scholar
  41. Mavko, G., Mukerji, T., and Dvorkin, J. (2009) Rock physics handbook: Tools for seismic analysis in porous media: Cambridge University Press.Google Scholar
  42. Monk, D., Close, D., Perez, M., and Goodway, B. (2011) Shale gas and geophysical developments. CSGS RECORDER, v.6, pp.35–38.Google Scholar
  43. Naik, G.C. (2003) Tight Gas Reservoir: an unconventional natural energy source for the future, SPE, pp.1-32.Google Scholar
  44. Passey, Q.R., Bohaces, K.M., Esch, W.L., Klimentidis, R., and Sinha, S. (2010) From oil prone source rock to gas producing shale reservoir, geologic and petrophysical characterization of unconventional shale gas reservoirs: SPE, 131350, pp.1-29.Google Scholar
  45. Passey, O.R., Moretti, F.U., Stroud, J.D. (1990) A practical modal for organic-richness from porosity and resistivity logs. AAPG Bull., v.74, pp.1777–1794.Google Scholar
  46. Peters, K.E., Cassa, M.R. (1994) Applied source rock geochemistry” in Magoon L.B. and Dow W.G. (Eds), The petroleum system — From source to trap. AAPG Mem., v.60, pp.93–120.Google Scholar
  47. Rezaee, R. and Chehrazi, A. (2005) Wireline Logging and Interpretation, University of Tehran. Publication, v.8, pp.800–805.Google Scholar
  48. Rider, M. (2002) The geological interpretation of well logs: 2nd edition Rider French Consulting Ltd.Google Scholar
  49. Roth, M. (2010) Shale Gas Reservoirs — Similar yet so different. 16th 3D Seismic Symposium, Denver, USA.Google Scholar
  50. Sayers, C.M. (2013) The effect of kerogen on the elastic anisotropy of organic-rich shales. Geophysics, v.78, pp.D65–D74.CrossRefGoogle Scholar
  51. Schmoker, J.W. (1981) Determination of organic matter content of Appalachian Devonian shales from gamma ray logs. Bull. AAPG, v.65, pp.1285–1298.Google Scholar
  52. Singha, D. and Chatterjee, R. (2017) Rock Physics Modeling in Sand Reservoir through Well Log Analysis, Krishna-Godavari basin, India. Geomechanics and Engineering, v.13, pp.99–117.Google Scholar
  53. Sweeney, J.J. and Burnham, A.K. (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull., v.74, pp.1559–1570.Google Scholar
  54. Shiri, M., Karami, R.R., Harami, R.M., and Rezaee, M. (2013) Evaluation of organic carbon content and source rock maturity using petrophysical logs and geochemical data: Case study of Horn Valley Siltstone source rock, Amadeus Basin, Central Australia. Jour. Zankoy Sulimani, v. 15, pp.145–158.CrossRefGoogle Scholar
  55. Singh, P., Husain, R., Rabie, A., Ahmed, A.K., and Abdulaziz, A.F.M. (2013) Understanding geophysical responses for identification of sweet spots for Oxfordian Shale oil/gas plays in Kuwait. Huston Annual Meeting, SEG, pp.2269-2273.Google Scholar
  56. Slatt, R.M. and Abousleiman, Y. (2011) Merging sequence stratigraphy and geomechanics for unconventional gas shales. The Leading Edge, v.30, pp.274–82.CrossRefGoogle Scholar
  57. Sunjay (2011) Shale gas An unconventional reservoir, CSPG, CSEG, CWLS Convention. pp.1-4.Google Scholar
  58. Sun, S.Z., Sun, Y., Sun, C., Liu, Z., and Dong, N. (2013) Methods of calculating total organic carbon from well logs and its application on rock’s properties analysis. Geo Convention, pp.1-7.Google Scholar
  59. Vernik, L., and Milovac, J. (2011) Rock physics of organic shales The Leading Edge, v.3, pp.318–323.CrossRefGoogle Scholar
  60. Wenk, H.R., Lonardelli, I., Franz, H., Nihei, K., and Nakagawa, S. (2007) Preferred orientation and elastic anisotropy of illite-rich shale. Geophysics, v.72, pp. E69–E75.CrossRefGoogle Scholar
  61. Guang-Zhi, Z., Huai-Zhen, C., Qi, W., and Xing-Yao, Y. (2012) Estimation of S-wave velocity and anisotropic parameters using fractured carbonate rock physics model. Chinese Jour. Geophys., v.56. pp.1707–1715.Google Scholar
  62. Zhu, Y., Xu, S., Payne, M., Martinez, A., Liu, E., Harris, C., and Bandyopadhyay, K. (2012) improved rock-physics model for shale gas reservoirs. 82nd Annual Internat. Meeting, SEG, pp.1-5.Google Scholar
  63. Zhu, Y., Liu, E., Martinez, A., and Harris, C.E. (2011) Understanding geophysical responses of shale-gas plays. The Leading Edge, v.30, pp.332–338.CrossRefGoogle Scholar

Copyright information

© Geol. Soc. India 2019

Authors and Affiliations

  • Perveiz Khalid
    • 1
    Email author
  • Jahanzeb Qureshi
    • 2
  • Zia Ud Din
    • 1
  • Sami Ullah
    • 1
  • Javed Sami
    • 2
  1. 1.Institute of GeologyUniversity of the PunjabLahorePakistan
  2. 2.Department of Space ScienceUniversity of the PunjabLahorePakistan

Personalised recommendations