Advertisement

Magnetic Anisotropy vs. Shape Preferred Orientation in Quartzites with Negative Susceptibility — Implications for Analysing Strain Intensity Variations

  • A. R. Renjith
  • Manish A. MamtaniEmail author
  • V. Abhijith
  • Virendra Rana
Research Article
  • 8 Downloads

Abstract

Through this study the robustness of using anisotropy of magnetic susceptibility (AMS) data is tested as a gauge of intensity of shape preferred orientation (SPO) in pure quartzites that have a low mean magnetic susceptibility (Km). AMS of eight quartzite samples from the Rengali province (eastern India) is measured, and the degree of magnetic anisotropy Pj, which is a measure of the intensity of magnetic fabric is calculated. Quartz grain size, shape as well as orientation data are obtained based on SEM-EBSD analysis of each sample. Using these microstructural data, intensity of SPO of quartz grains in each sample is quantified by measuring (i) the concentration parameter (κq) and (ii) the azimuthal anisotropy of fractal dimension (AAD). Magnitude of 2D strain (E) is also estimated for each sample. Based on these data the statistical relationship between the various parameters is evaluated viz. Pj vs. κq, Pj vs. AAD, Pj vs. E, κq vs. AAD, κq vs. E, AAD vs. E. A strong linear relationship is established in each case. It is argued that quartz aspect ratio, dominant slip systems/recrystallization mechanisms cannot explain the strong linear correlations between magnetic anisotropy, SPO and strain. To further support findings of the above determined relationships, positive Km quartzites were also investigated. It is found that the latter do not show a strong relationship between the intensity of AMS, SPO and strain. It is therefore, established that whilst the variation in intensity of magnetic fabric can be used to gauge variation in intensities of strain as well as SPO in the investigated negative Km quartzites, the same is not true for positive Km quartzites, where the AMS is controlled the para/ferromagnetic phases present in the rock.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This paper is a part of ARR’s doctoral research carried out at the Indian Institute of Technology (IIT) Kharagpur, India. The authors thank Biswajit Mishra, Manoj Kumar Ozha and B. Govindarao for SEM-EDS analysis in Department of Geology & Geophysics (IIT Kharagpur). Niloy Bhowmik is thanked for technical support in carrying out SEM-EBSD analysis at the Central Research Facility (CRF, IIT Kharagpur). Temperature variation of magnetic susceptibility measurements were made at the Karlsruhe Institute of Technology (Karlsruhe, Germany) by MAM during a research visit that was funded by the Alexander von Humboldt Foundation (Germany). Discussions with Agnes Kontny are gratefully acknowledged. Thanks are due to Koushik Sen for a thoughtful review.

Supplementary material

12594_2019_1262_MOESM1_ESM.pdf (7.8 mb)
Supplementary material for the article on Magnetic Anisotropy vs. Shape Preferred Orientation in Quartzites with Negative Susceptibility — Implications for Analysing Strain Intensity Variations

References

  1. Archanjo, C.J., Launeau, P., Bouchez, J.L. (1995) Magnetic fabric vs. magnetite and biotite shape fabrics of the magnetite-bearing granite pluton of Gamelerias (Northeast Brazil). Phys. Earth Planet. Inter., v.89, pp.63–75.CrossRefGoogle Scholar
  2. Bascou, J., Camps, P., Dautria, J.M. (2005) Magnetic versus crystallographic fabrics in a basaltic lava flow. Jour. Volcanol. Geothermal Res., v.145, pp.119–135.CrossRefGoogle Scholar
  3. Borradaile, G.J., Alford, C. (1987) Relationship between magnetic susceptibility and strain in laboratory experiments. Tectonophysics v.133, pp.121–135.CrossRefGoogle Scholar
  4. Borradaile, G.J., Jackson, M. (2004) Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks. In: Martín-Hernandez, F., Lüneburg, C.M., Aubourg, C., Jackson, M. (Eds.), Magnetic Fabric: Methods and Applications. Geol. Soc. London, Spec. Publ., no. 238, pp.299–360.Google Scholar
  5. Borradaile, G.J., Jackson, M. (2010) Structural geology, petrofabrics and magnetic fabrics (AMS, AARM, AIRM). Jour. Struc. Geol., v.32, pp.1519–1551.CrossRefGoogle Scholar
  6. Braun, D., Weinberger, R., Eyal, Y., Feinstein, S., Harlavan, Y., Levi, T. (2015) Distinctive diamagnetic fabrics in dolostones evolved at fault cores, the Dead Sea Transform. Jour. Struc. Geol., v.77, pp.11–26.CrossRefGoogle Scholar
  7. Burmeister, K.C., Harrison, M.J., Marshak, S., Ferré, E.C., Bannister, R.A., Kodama, K.P. (2009) Comparison of Fry strain ellipse and AMS ellipsoid trends to tectonic fabric trends in very low-strain sandstone of the Appalachian fold-thrust belt. Jour. Struc. Geol., v.31, 1028–1038.CrossRefGoogle Scholar
  8. Cañón-Tapia, E., Chávez-Álvarez, M.J. (2004) Rotation of uniaxial ellipsoidal particles during simple shear revisited: the influence of elongation ratio, initial distribution of a multiparticle system and amount of shear in the acquisition of a stable orientation. Jour. Struc. Geol., v.26, pp.2073–2087.CrossRefGoogle Scholar
  9. Crowe, W.A., Nash, C.R., Harris, L.B., Leeming, P.M., Rankin, L.R. (2003) The geology of the Rengali Province: implications for the tectonic development of northern Orissa, India. Jour. Asian Earth Sci., v.21, pp.697–710.CrossRefGoogle Scholar
  10. de Wall, H., Bestmann, M., Ullemeyer, K. (2000) Anisotropy of diamagnetic susceptibility in Thassos marble: A comparison between measured and modeled data. Jour. Struc. Geol., v.22, pp.1761–1771.CrossRefGoogle Scholar
  11. Ferré, E.C., Gébelin, A., Till, J.L., Sassier, C. and Burmeister, K.C. (2014) Deformation and magnetic fabrics in ductile shear zones: A review. Tectonophysics, v.629, pp.179–188.CrossRefGoogle Scholar
  12. Gerik, A. (2009) Modification and automation of fractal geometry methods: new tools for quantifying rock fabrics and interpreting fabric-forming processes. Unpublished Ph.D. thesis, Technische Universität München, 126 pp.Google Scholar
  13. Gerik, A., Kruhl, J.H. (2009) Towards automated pattern quantification: time-efficient assessment of anisotropy of 2D patterns with AMOCADO. Computers & Geosciences, v.35, pp.1087–1097.CrossRefGoogle Scholar
  14. Gerik, A., Kruhl, J.H., Caggianelli, A. (2010) Quantification of flow patterns in sheared tonalite crystal-melt mush: application of fractal-geometry methods. Jour. Geol. Soc. India, v.75, pp.210–224.CrossRefGoogle Scholar
  15. Ghosh, G., Bose, S., Das, K., Dasgupta, A., Yamamoto, T., Hayasaka, Y., Chakrabarti, K., Mukhopadhyay, J. (2016) Transpression and juxtaposition of middle crust over upper crust forming a crustal scale flower structure: Insight from structural, fabric, and kinematic studies from the Rengali Province, eastern India. Jour. Struc. Geol., v.83, pp.156–179.CrossRefGoogle Scholar
  16. Goswami, S., Mamtani, M.A., Virendra, R. (2018) Quartz CPO and kinematic analysis in deformed rocks devoid of visible stretching lineations: an integrated AMS and EBSD investigation. Jour. Struc. Geol., in-press ( https://doi.org/10.1016/j.jsg.2018.04.008).
  17. Greiling, R.O., Verma, P.K. (2001) Strike-slip tectonics and granitoid emplacement: an AMS fabric study from the Odenwald Crystalline Complex, SW Germany. Mineral. Petrol., v.72, pp.165–184.CrossRefGoogle Scholar
  18. Harris, C., Franssen, R., Loosveld, R. (1991) Fractal analysis of fractures in rocks: the Cantor’s dust method — comment. Tectonophysics, v.198, pp.107–111.CrossRefGoogle Scholar
  19. Hrouda, F. (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys. Surv., v.5, pp.37–82.CrossRefGoogle Scholar
  20. Hrouda, F. (1986) The effect of quartz on the magnetic anisotropy of quartzite. Studia Geophysica et Geodaetica, v.30, pp.39–45.CrossRefGoogle Scholar
  21. Hrouda, F. (1993) Theoretical models of magnetic anisotropy to strain relationship revisited. Phys. Earth Planet. Inter., v.77, pp.237–249.CrossRefGoogle Scholar
  22. Hrouda, F. (2004) Problems in interpreting AMS parameters in diamagnetic rocks. In: Martin-Hernández F, Lüneburg CM, Aubourg C, Jackson M (eds.) Magnetic fabric: methods and applications, Geol. Soc. London, Spec. Publ., no. 238, pp.49–59.Google Scholar
  23. Issachar, R., Levi, T., Marco, S., Weinberger, R. (2015) Anisotropy of magnetic susceptibility in diamagnetic limestones reveals deflection of the strain field near the Dead Sea Fault, northern Israel. Tectonophysics, v.656, pp.175–189.CrossRefGoogle Scholar
  24. Jelínek, V. (1981) Characterization of magnetic fabric of rocks. Tectonophysics, v.79, pp.T63–T67.CrossRefGoogle Scholar
  25. Kruhl, J.H., Nega, M. (1996) The fractal shape of sutured quartz grain boundaries: application as a geothermometer. Geologische Rundschau 85, 38–43.CrossRefGoogle Scholar
  26. Lavallée, Y., Meredith, P.G., Dingwell, D.B., Hess, K.-U., Wassermann, J., Cordonnier, B., Gerik, A., Kruhl, J.H. (2008) Seismogenic lavas and explosive eruption forecasting. Nature, v.453, pp.507–510.CrossRefGoogle Scholar
  27. Levi, T., Weinberger, R. (2011) Magnetic fabrics of diamagnetic rocks and the strain field associated with the Dead Sea Fault, northern Israel. Jour. Struc. Geol., v.33, pp.566–578.CrossRefGoogle Scholar
  28. Majumder, S., Mamtani, M.A. (2009) Magnetic fabric in the Malanjkhand Granite (central India) — implications for regional tectonics and proterozoic suturing of the Indian shield. Phys. Earth Planet. Inter., v.172, pp.310–323.CrossRefGoogle Scholar
  29. Mamtani, M.A. (2010) Strain-rate estimation using fractal analysis of quartz grains in naturally deformed rocks. Jour. Geol. Soc. India, v.75, pp.202–209.CrossRefGoogle Scholar
  30. Mamtani, M.A. (2014) Magnetic fabric as a vorticity gauge in syntectonically deformed granitic rocks. Tectonophysics, v.629, pp.189–196.CrossRefGoogle Scholar
  31. Mamtani, M.A., Greiling, R.O. (2010) Serrated quartz grain boundaries, temperature and strain rate: testing fractal techniques in a syntectonic granite. In: Spalla, I., Marotta, A.M. and Gosso, G. (Eds.), Advances in Interpretation of Geological Processes: Refinement of Multi-Scale Data and Integration in Numerical Modelling. Geol. Soc. London, Spec. Publ., no. 332, pp.35–48.Google Scholar
  32. Mamtani, M.A., Sengupta, A. (2009) Anisotropy of magnetic susceptibility analysis of deformed kaolinite: implications for evaluating landslides. Internat. Jour. Earth Sci., v.98, pp.1721–1725.CrossRefGoogle Scholar
  33. Mamtani, M.A., Sengupta, P., 2010. Significance of AMS analysis in evaluating superposed folds in quartzites. Geol. Magz., v.147, pp.910–918.CrossRefGoogle Scholar
  34. Mamtani, M.A., Vishnu, C.S. (2012) Does AMS micaceous quartzite provide information about shape of the strain ellipsoid? Internat. Jour. Earth Sci., v.101, pp.693–703.CrossRefGoogle Scholar
  35. Mamtani, M.A., Vishnu, C.S., Basu, A. (2012) Quantification of microcrack anisotropy in quartzite — a comparison between experimentally undeformed and deformed samples. Jour. Geol. Soc. India, v.80, pp.153–166.CrossRefGoogle Scholar
  36. Mamtani, M.A., Pal, T., Greiling, R.O. (2013) Kinematic analysis using AMS data from a deformed granitoid. Jour. Struc. Geol., v.50, pp.119–132.CrossRefGoogle Scholar
  37. Mamtani, M.A., Greiling, R.O., Karanth, R.V., Merh, S.S. (1999) Orogenic deformation and its relation with AMS fabric—an example from the southern Aravalli mountain belt, India. In: Radhakrihsna, T., Piper, J.D. (Eds.), The Indian subcontinent and Gondwana: a palaeomagnetic and rock magnetic perspective. Mem. Geol. Soc. India, no. 44, pp.9–24.Google Scholar
  38. Mamtani, M.A., Piazolo, S., Greiling, R.O., Kontny, A., Hrouda, F. (2011) Process of magnetite fabric development during granite deformation. Earth Planet. Sci. Lett., v.308, pp.77–89.CrossRefGoogle Scholar
  39. Mamtani, M.A., Abhijith, V., Lahiri, S., Rana, V., Bhatt, S., Goswami, S., Renjith, A.R. (2017) Determining the reference frame for kinematic analysis in S-tectonites using AMS. Jour. Geol. Soc. India, v.90, pp.5–8.CrossRefGoogle Scholar
  40. Mandelbrot, B.B. (1983) The fractal geometry of nature. Freeman, New York, 461p.CrossRefGoogle Scholar
  41. Misra, S., Gupta, S. (2014) Superposed deformation and inherited structures in an ancient dilational step-over zone: Post-mortem of the Rengali Province, India. Jour. Struc. Geol., v.59, pp.1–17.CrossRefGoogle Scholar
  42. Mondou, M., Egydio-Silva, M., Vauchez, A., Raposo, M.I.B., Oliveira, A.F. (2012) Complex, 3D strain patterns in a synkinematic tonalite batholith from the Araçuaí Neoproterozoic orogen (Eastern Brazil): Evidence from combined magnetic and isotopic chronology studies. Jour. Struc. Geol., v.39, pp.158–179.CrossRefGoogle Scholar
  43. Mukherji, A., Chaudhuri, A.K., Mamtani, M.A. (2004) Regional scale strain variations in the Banded Iron Formations of eastern India: results from anisotropy of magnetic susceptibility studies. Jour. Struc. Geol., v.26, pp.2175–2189.CrossRefGoogle Scholar
  44. Mukhopadhyay, D., Sengupta, S. (1971) Structural geometry and time relation of metamorphic recrystallisation to deformation in the Precambrian rocks near Simulpal, Eastern India. Bull. Geol. Soc. Amer., v.82, pp.2251–2260.CrossRefGoogle Scholar
  45. Nagata, T. (1961) Rock magnetism. Maruzen Tokyo.Google Scholar
  46. Naha, K. (1960) Granite emplacement in relation to thrusting in south Dhalbhum and northeastern Mayurbhanj. Quart. Jour. Geol. Min. Metall. Soc. India, v.32, pp.115–122.Google Scholar
  47. Nye, J. F. (1957) Physical Properties of Crystals. Clarendon Press, Oxford.Google Scholar
  48. Owens, W. H., Bamford, D. (1976) Magnetic, Seismic, and Other Anisotropic Properties of Rock Fabrics. Phil. Trans. Roy. Soc. London, A283, 55p.Google Scholar
  49. Panozzo, R. (1987) Two-dimensional strain determination by the inverse SURFOR wheel. Jour. Struc. Geol., v.9, pp.115–119.CrossRefGoogle Scholar
  50. Pennacchioni, G., Di Toro, G., Mancktelow, N.S. (2001) Strain-insensitive preferred orientation of porphyroclasts in Mont Mary mylonites. Jour. Struc. Geol., v.23, pp.1281–1298.CrossRefGoogle Scholar
  51. Piazolo, S., Passchier, C.W. (2002) Controls on lineation development in low to medium grade shear zones: a study from the Cap de Creus peninsula, NE Spain. Jour. Struc. Geol., v.24, pp.25–44.CrossRefGoogle Scholar
  52. Piazolo, S., Bons, P.D., Passchier, C.W. (2002) The influence of matrix rheology and vorticity on fabric development of populations of rigid objects during plane strain deformation. Tectonophysics, v.351, pp.315–329.CrossRefGoogle Scholar
  53. Quade, H., Reinert, T., Schmidt, D. (1994) Diamagnetic Anisotropy of Precambrian Quartzites (Moeda Formation, Taquaral Valley, Minas Gerais, Brazil). Materials Science Forum, v.157–162, pp.1675–1680.CrossRefGoogle Scholar
  54. Raposo, M.I.B., Gastal, M.C.P. (2009) Emplacement mechanism of the main granite pluton of the Lavras do Sul intrusive complex, South Brazil, determined by magnetic anisotropies. Tectonophysics v.466, pp.18–31.CrossRefGoogle Scholar
  55. Raposo, M.I.B., Drukas, C.O., Basei, M.A.S. (2014) Deformation in rocks from Itajaí basin, Southern Brazil, revealed by magnetic fabrics. Tectonophysics, v.629, pp.290–302.CrossRefGoogle Scholar
  56. Renjith, A.R., Mamtani, M.A., Urai, J.L. (2016) Fabric analysis of quartzites with negative magnetic susceptibility — does AMS provide information of SPO or CPO of quartz? Jour. Struc. Geol., v.82, pp.48–59.CrossRefGoogle Scholar
  57. Sen, K., Mamtani, M.A. (2006) Magnetic fabric, shape preferred orientation and regional strain in granitic rocks. Jour. Struc. Geol., v.28, pp.1870–1882.CrossRefGoogle Scholar
  58. Sen, K., Majumder, S., Mamtani, M.A. (2005) Degree of magnetic anisotropy as a strain intensity gauge in ferromagnetic granites. Jour. Geol. Soc. London, v.162, pp.583–586.CrossRefGoogle Scholar
  59. Tarling, D.H., Hrouda, F. (1993) The Magnetic Anisotropy of Rocks. Chapman and Hall, London, 217p.Google Scholar
  60. Till, J.L., Cogne, J-P., Marquer, D., Poilvet, J-C. (2015) Magnetic fabric evolution in ductile shear zones: examples in metagranites of the Aar Massif (Swiss Central Alps). Terra Nova, v.27, pp.184–194.CrossRefGoogle Scholar
  61. Treagus, S.H., Treagus, J.E. (2001) Effects of object ellipticity on strain, and implications for clast-matrix rocks. Jour. Struc. Geol., v.23, pp.601–608.CrossRefGoogle Scholar
  62. Tripathy, N.R., Srivastava, H.B., Mamtani, M.A. (2009) Evaluation of a regional strain gradient in mylonitic quartzites from the footwall of the Main Central Thrust Zone (Garhwal Himalaya, India): Inferences from finite strain and AMS analyses. Jour. Asian Earth Sci., v.34, pp.26–37.CrossRefGoogle Scholar
  63. Vishnu, C.S. Mamtani, M.A., Basu, A. (2010) AMS, ultrasonic P-wave velocity and Rock Strength analysis in quartzites devoid of mesoscopic foliations — implications for rock mechanics studies. Tectonophysics, v.494, pp.191–200.CrossRefGoogle Scholar
  64. Volland, S. and Kruhl, J.H. (2004) Anisotropy quantification: the application of fractal geometry methods on tectonic fracture patterns of a Hercynian fault zone in NW Sardinia. Jour. Struc. Geol., v.26, pp.1499–1510.CrossRefGoogle Scholar

Copyright information

© GEOL. SOC. INDIA 2019

Authors and Affiliations

  • A. R. Renjith
    • 1
    • 2
  • Manish A. Mamtani
    • 1
    Email author
  • V. Abhijith
    • 1
  • Virendra Rana
    • 1
  1. 1.Department of Geology and GeophysicsIndian Institute of TechnologyKharagpurIndia
  2. 2.Oxford Instruments India Pvt. Ltd.MumbaiIndia

Personalised recommendations