Advertisement

On Granites

  • C. YakymchukEmail author
Research Article

Abstract

Granites are important components of the Earth’s continental crust and represent the net effect of thermochemical processes that operate during partial melting, magma extraction, ascent, emplacement and crystallization. Compositional and isotopic variations in granites arise from source heterogeneities, mixing in the source, and peritectic mineral entrainment as well as crystal fractionation and assimilation. Fluid-absent hydrate-breakdown melting reactions that accompany high-temperature metamorphism are responsible for differentiating the continental crust into a granitic upper portion and a residual lower portion. In some cases, melting can proceed through the influx of a hydrous fluid, although the significance of this on the long-term compositional differentiation of the continental crust is debated. Accessory minerals in granites are important chronometers and play a primary role in transferring the radiogenic isotope signature of sources to granites. Magma ascent and emplacement are guided by deformation and pluton construction is expected to be incremental with pluton heterogeneity being related to the interaction and differentiation of individual magma batches, as well as the extent to which melt separates from solid residual source material. The nature of the source plays a crucial role in the concentration of water and volatiles that are essential for the generation of hydrothermal-magmatic mineral deposits. Future studies of granites using non-traditional stable isotope systems are expected to provide new insights into the evolution of Earth’s continental crust.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This admittedly biased review has benefited from numerous discussions with colleagues and students. Nonetheless, any errors or omissions are my own. I thank Sandeep Singh for the invitation to write this review and an anonymous reviewer for constructive comments.

References

  1. Acosta-Vigil, A., Buick, I., Hermann, J., Cesare, B., Rubatto, D., London, D. and Morgan, G.B. (2010) Mechanisms of crustal anatexis: a geochemical study of partially melted metapelitic enclaves and host dacite, SE Spain. Jour. Petrol., v.51, pp. 785–821.CrossRefGoogle Scholar
  2. Ague, J.J. (1991) Evidence for major mass transfer and volume strain during regional metamorphism of pelites. Geology, v.19, pp. 855–858.CrossRefGoogle Scholar
  3. Anderson, J.L. (1983) Proterozoic anorogenic granite plutonism of North America. Geol. Soc. Amer. Mem., v.161, pp. 133–154.CrossRefGoogle Scholar
  4. Annen, C., Blundy, J.D. and Sparks, R.S.J. (2006) The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones. Jour. Petrol., v.47, pp. 505–539.CrossRefGoogle Scholar
  5. Atherton, M.P. (1993) Granite magmatism. Jour. Geol. Soc. London, v.150, pp. 1009–1023.CrossRefGoogle Scholar
  6. Ayres, M. and Harris, N. (1997) REE fractionation and Nd-isotope disequilibrium during crustal anatexis: constraints from Himalayan leucogranites. Chem. Geol., v.139, pp. 249–269.CrossRefGoogle Scholar
  7. Barbarin, B. (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, v.46, pp. 605–626.CrossRefGoogle Scholar
  8. Bartley, J.M., Coleman, D.S. and Glazner, A.F. (2008) Incremental pluton emplacement by magmatic crack-seal. Earth and Environmental Science. Trans. Royal Soc. Edinburgh, v.97, pp. 383–396.CrossRefGoogle Scholar
  9. Bartoli, O., Acosta-Vigil, A., Ferrero, S. and Cesare, B. (2016) Granitoid magmas preserved as melt inclusions in high-grade metamorphic rock. Amer. Mineral., v.101, pp. 1543–1559.CrossRefGoogle Scholar
  10. Barton, M.D. (1996) Granitic magmatism and metallogeny of southwestern North America. Earth and Environmental Science Trans. Royal Soc.f Edinburgh, v.87, pp. 261–280.Google Scholar
  11. Bea, F. (2012) The sources of energy for crustal melting and the geochemistry of heat-producing elements. Lithos, v.153, pp. 278–291.CrossRefGoogle Scholar
  12. Bea, F. and Montero, P. (1999) Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: an example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochim. Cosmochim. Acta, v.63, pp. 1133–1153.CrossRefGoogle Scholar
  13. Berger, A., Burri, T., Alt-Epping, P. and Engi, M. (2008) Tectonically controlled fluid flow and water-assisted melting in the middle crust: an example from the Central Alps. Lithos, v.102, pp. 598–615.CrossRefGoogle Scholar
  14. Bingen, B., Demaiffe, D. and Hertogen, J. (1996) Redistribution of rare earth elements, thorium, and uranium over accessory minerals in the course of amphibolite to granulite facies metamorphism: The role of apatite and monazite in orthogneisses from southwestern Norway. Geochim. Cosmochim. Acta, v.60, pp. 1341–1354.CrossRefGoogle Scholar
  15. Blereau, E., Clark, C., Taylor, R.J., Johnson, T., Fitzsimons, I. and Santosh, M. (2016) Constraints on the timing and conditions of high grade metamorphism, charnockite formation and fluid-rock interaction in the Trivandrum Block, southern India. Jour. Metamorph. Geol., v.34, pp. 527–549.CrossRefGoogle Scholar
  16. Blevin, P.L. and Chappell, B.W. (1992) The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia. Earth and Environmental Science Trans. Royal Soc. Edinburgh, v.83, pp. 305–316.Google Scholar
  17. Blevin, P.L., Chappell, B.W. and Allen, C.M., 1996. Intrusive metallogenic provinces in eastern Australia based on granite source and composition. Earth and Environmental Science Trans. Royal Soc. Edinburgh, v.87, pp. 281–290.CrossRefGoogle Scholar
  18. Blevin, P.L. and Chappell, B.W., 1995. Chemistry, origin, and evolution of mineralized granites in the Lachlan fold belt, Australia; the metallogeny of I-and S-type granites. Econ. Geol., v.90, pp. 1604–1619.CrossRefGoogle Scholar
  19. Boehnke, P., Watson, E.B., Trail, D., Harrison, T.M. and Schmitt, A.K. (2013) Zircon saturation re-revisited. Chem. Geol., v.351, pp. 324–334.CrossRefGoogle Scholar
  20. Bonin, B. (2007) A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos, v.97, pp. 1–29.CrossRefGoogle Scholar
  21. Brown, C.R., Yakymchuk, C., Brown, M., Fanning, C.M., Korhonen, F.J., Piccoli, P.M. and Siddoway, C.S. (2016) From Source to Sink: Petrogenesis of Cretaceous Anatectic Granites from the Fosdick Migmatite-Granite Complex, West Antarctica. Jour. Petrol., v.57, pp. 1241–1278.CrossRefGoogle Scholar
  22. Brown, M. (1994) The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally-derived granite connection in thickened orogens. Earth Sci. Rev., v.36, pp. 83–130.CrossRefGoogle Scholar
  23. Brown, M. (2010) Melting of the continental crust during orogenesis: the thermal, rheological, and compositional consequences of melt transport from lower to upper continental crust. Can. Jour. Earth Sci., v.47, pp. 655–694.CrossRefGoogle Scholar
  24. Brown, M. (2013) Granite: From genesis to emplacement. Geol. Soc. Amer., Bull., v.125, pp. 1079–1113.CrossRefGoogle Scholar
  25. Brown, M., Averkin, Y.A., McLellan, E.L. and Sawyer, E.W. (1995) Melt segregation in migmatites. Jour. Geophys. Res. B: Solid Earth, v.100, pp. 15655–15679.CrossRefGoogle Scholar
  26. Brown, M. and Solar, G. (1999) The mechanism of ascent and emplacement of granite magma during transpression: a syntectonic granite paradigm. Tectonophysics, v.312, pp. 1–33.CrossRefGoogle Scholar
  27. Brown, M. and Rushmer, T. (eds) (2006) Evolution and Differentiation of the Continental Crust. Cambridge, New York. 553p.Google Scholar
  28. Campbell, I. and Taylor, S. (1983) No water, no granites No oceans, no continents. Geophys. Res. Lett., v.10, pp. 1061–1064.CrossRefGoogle Scholar
  29. Candela, P.A. and Holland, H.D. (1984) The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochim. Cosmochim. Acta, v.48, pp. 373–380.CrossRefGoogle Scholar
  30. Candela, P.A. and Piccoli, P.M. (2005) Magmatic Processes in the Development of Porphyry-Type Ore Systems. Econ. Geol., v.100, pp. 25–37.Google Scholar
  31. Carmichael, I.S. (1991) The redox states of basic and silicic magmas: a reflection of their source regions? Contr. Mineral. Petrol., v.106, pp. 129–141.CrossRefGoogle Scholar
  32. Carvalho, B., Sawyer, E. and Janasi, V. (2016) Crustal reworking in a shear zone: transformation of metagranite to migmatite. Jour Metamorph. Geol., v.34, pp. 237–264.CrossRefGoogle Scholar
  33. Carvalho, B.B., Bartoli, O., Ferri, F., Cesare, B., Ferrero, S., Remusat, L., Capizzi, L.S., and Poli, S. (2018). Anatexis and fluid regime of the deep continental crust: new clues from melt and fluid inclusions in metapelitic migmatites from Ivrea Zone (NW Italy). Jour. Metamorph Geol, in press.  https://doi.org/10.1111/jmg.12463.
  34. Cernyì, P. (1991) Rare-element granitic pegmatites. Part II: regional to global environments and petrogenesis. Geoscience Canada, v.18, pp. 68–81.Google Scholar
  35. Cernyì, P., Blevin, P.L., Cuney, M. and London, D. (2005) Granite-related ore deposits. Econ. Geol., v.100, pp. 337–370.Google Scholar
  36. Cesare, B., Ferrero, S., Salvioli-Mariani, E., Pedron, D. and Cavallo, A. (2009) “Nanogranite” and glassy inclusions: The anatectic melt in migmatites and granulites. Geology, v.37, pp. 627–630.CrossRefGoogle Scholar
  37. Chappell, B., White, A. and Wyborn, D. (1987) The importance of residual source material (restite) in granite petrogenesis. Jour. Petrol., v.28, pp. 1111–1138.CrossRefGoogle Scholar
  38. Chappell, B.W. and White, A.J.R. (1974) Two contrasting granite types. Pacif. Geol., v.8, pp. 173–174.Google Scholar
  39. Chappell, B.W. and White, A.J., 2001. Two contrasting granite types: 25 years later. Australian Jour. Earth Sci., v.48, pp. 489–499.CrossRefGoogle Scholar
  40. Chappell, B.W., 2004. Towards a unified model for granite genesis. Earth and Environmental Science Trans. Royal Soc. Edinburgh, v.95, pp. 1–10.CrossRefGoogle Scholar
  41. Chen, G.-N. and Grapes, R. (2007) Granite Genesis: In-Situ Melting and Crustal Evolution. Springer Netherlands. 278p.CrossRefGoogle Scholar
  42. Clark, C., Fitzsimons, I.C., Healy, D. and Harley, S.L. (2011) How does the continental crust get really hot? Elements, v.7, pp. 235–240.CrossRefGoogle Scholar
  43. Clarke, D.B. (1992) Granitoid Rocks. Springer, London. 284p.Google Scholar
  44. Clemens, J.D. (2003) S-type granitic magmas—petrogenetic issues, models and evidence. Earth Sci. Rev., v.61, pp. 1–18.CrossRefGoogle Scholar
  45. Clemens, J.D. (2006) Melting of the continental crust: fluid regimes, melting reactions, and source-rock fertility. In: M. Brown and T. Rushmer (Eds.), Evolution and Differentiation of the Continental Crust. Cambridge, pp. 296–327.Google Scholar
  46. Clemens, J.D. (2011, Sept 20). Re: distinguishing I- and S-type granites [Electronic mailing list message]. Retrieved from https://www.jiscmail.ac.uk/lists/geo-metamorphism.html
  47. Clemens, J.D. and Petford, N. (1999) Granitic melt viscosity and silicic magma dynamics in contrasting tectonic settings. Jour. Geol. Soc., v.156, pp. 1057–1060.CrossRefGoogle Scholar
  48. Clemens, J.D. and Stevens, G. (2012) What controls chemical variation in granitic magmas? Lithos, v.134, pp. 317–329.CrossRefGoogle Scholar
  49. Clemens, J.D. and Stevens, G. (2015) Comment on ‘Water-fluxed melting of the continental crust: A review’ by RF Weinberg and P. Hasalová. Lithos, v.234, pp. 100–101.CrossRefGoogle Scholar
  50. Clemens, J.D., Stevens, G. and Farina, F. (2011) The enigmatic sources of I-type granites: the peritectic connexion. Lithos, v.126, pp. 174–181.CrossRefGoogle Scholar
  51. Clemens, J.D. and Watkins, J. (2001) The fluid regime of high-temperature metamorphism during granitoid magma genesis. Contrib. Mineral. Petrol., v.140, pp. 600–606.CrossRefGoogle Scholar
  52. Clemens, J.D. and Droop, G.T.R. (1998) Fluids, P-T paths and the fates of anatectic melts in the Earth’s crust. Lithos, v.44, pp. 21–36.CrossRefGoogle Scholar
  53. Clemens, J.D. and Stevens, G. (2016) Melt segregation and magma interactions during crustal melting: Breaking out of the matrix. Earth Sci. Rev., v.160, pp. 333–349.CrossRefGoogle Scholar
  54. Cobbing, J. (2000) The Geology and Mapping of Granite Batholiths. Springer-Verlag, Berlin. 141p.Google Scholar
  55. Coleman, D.S., Gray, W. and Glazner, A.F. (2004) Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology, v.32, pp. 433–436.CrossRefGoogle Scholar
  56. Coleman, R.G. and Peterman, Z.E. (1975) Oceanic plagiogranite. Jour. Geophys. Res., v.80, pp. 1099–1108.CrossRefGoogle Scholar
  57. Collins, W. (1996) Lachlan Fold Belt granitoids: products of three-component mixing. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, v.87, pp. 171–181.CrossRefGoogle Scholar
  58. Collins, W., Beams, S., White, A. and Chappell, B. (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contr. Mineral. Petrol., v.80, pp. 189–200.CrossRefGoogle Scholar
  59. Compston, W. and Chappell, B.W. (1979). Sr-isotope evolution of granitoid source rocks. In: Jaeger, J.C. and Hales, A. (Eds.), The Earth: its origin, structure and evolution. pp. 377–426.Google Scholar
  60. Cottle, J.M., Larson, K.P. and Yakymchuk, C. (2018) Contrasting accessory mineral behavior in minimum-temperature melts: Empirical constraints from the Himalayan metamorphic core. Lithos, v.312, pp. 57–71.CrossRefGoogle Scholar
  61. Couzinié, S., Laurent, O., Moyen, J.-F., Zeh, A., Bouilhol, P. and Villaros, A. (2016) Post-collisional magmatism: Crustal growth not identified by zircon Hf-O isotopes. Earth Planet. Sci. Lett., v.456, pp. 182–195.CrossRefGoogle Scholar
  62. Creaser, R.A., Price, R.C. and Wormald, R.J. (1991) A-type granites revisited: assessment of a residual-source model. Geology, v.19, pp. 163–166.CrossRefGoogle Scholar
  63. Cruden, A. 2006. Emplacement and growth of plutons: implications for rates of melting and mass transfer in continental crust. In: M. Brown and T. Rushmer (Eds.), Evolution and Differentiation of the Continental Crust. Cambridge. pp. 455–519.Google Scholar
  64. Cuney, M. and Kyser, K. (2009) Recent and not-so-recent developments in uranium deposits and implications for exploration. Mineral. Assoc. Canada, 272p.Google Scholar
  65. Cuney, M., Marignac, C. and Weisbrod, A. (1992) The Beauvoir topaz-lepidolite albite granite (Massif Central, France); the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Econ. Geol., v.87, pp. 1766–1794.CrossRefGoogle Scholar
  66. Dhuime, B., Hawkesworth, C. and Cawood, P. (2011) When continents formed. Science, v.331, pp. 154–155.CrossRefGoogle Scholar
  67. Diener, J.F.A. and Fagereng, Å. (2014) The influence of melting and melt drainage on crustal rheology during orogenesis. Jour. Geophys. Res. B: Solid Earth, v.119, pp. 6193–6210.CrossRefGoogle Scholar
  68. Diener, J. F., White, R. W. and Hudson, T. J. (2014) Melt production, redistribution and accumulation in mid-crustal source rocks, with implications for crustal-scale melt transfer. Lithos, v.200, pp. 212–225.CrossRefGoogle Scholar
  69. Eby, G.N. (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, v.26, pp. 115–134.CrossRefGoogle Scholar
  70. Eby, G.N. (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, v.20, pp. 641–644.CrossRefGoogle Scholar
  71. Einaudi, M.T., Hedenquist, J.W. and Inan, E.E. (2003) Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. Spec. Publ. Soc. Econ. Geol., v.10, pp. 285–314.Google Scholar
  72. Farina, F., Stevens, G. and Villaros, A. (2012) Multi-batch, incremental assembly of a dynamic magma chamber: the case of the Peninsula pluton granite (Cape Granite Suite, South Africa). Mineral. Petrol., v.106, pp. 193–216.CrossRefGoogle Scholar
  73. Fisher, C.M., Hanchar, J.M., Miller, C.F., Phillips, S., Vervoort, J.D. and Whitehouse, M.J. (2017) Combining Nd isotopes in monazite and Hf isotopes in zircon to understand complex open-system processes in granitic magmas. Geology, v.45, pp. 267–270.CrossRefGoogle Scholar
  74. Flowerdew, M., Millar, I., Vaughan, A., Horstwood, M. and Fanning, C. (2006) The source of granitic gneisses and migmatites in the Antarctic Peninsula: a combined U-Pb SHRIMP and laser ablation Hf isotope study of complex zircons. Contrib. Mineral. Petrol., v.151, pp. 751–768.CrossRefGoogle Scholar
  75. Foden, J., Sossi, P.A. and Wawryk, C.M. (2015) Fe isotopes and the contrasting petrogenesis of A-, I-and S-type granite. Lithos, v.212, pp. 32–44.CrossRefGoogle Scholar
  76. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J. and Frost, C.D. (2001) A geochemical classification for granitic rocks. Jour. Petrol., v.42, pp. 2033–2048.CrossRefGoogle Scholar
  77. Frost, B.R. and Frost, C.D. (2008) On charnockites. Gondwana Res., v.13, pp. 30–44.CrossRefGoogle Scholar
  78. Frost, C.D. and Ronald Frost, B. (1997) Reduced rapakivi-type granites: the tholeiite connection. Geology, v.25, pp. 647–650.CrossRefGoogle Scholar
  79. Frost, C.D. and Frost, B.R. (2010) On ferroan (A-type) granitoids: their compositional variability and modes of origin. Jour. Petrol., v.52, pp. 39–53.CrossRefGoogle Scholar
  80. Gao, L.-E., Zeng, L. and Asimow, P.D. (2017) Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites. Geology, v.45, pp. 39–42.CrossRefGoogle Scholar
  81. Garcia-Arias, M. and Stevens, G. (2017) Phase equilibrium modelling of granite magma petrogenesis: A. An evaluation of the magma compositions produced by crystal entrainment in the source. Lithos, v.277, pp. 131–153.CrossRefGoogle Scholar
  82. Gardien, V., Thompson, A.B., Grujic, D. and Ulmer, P. (1995) Experimental melting of biotite+ plagioclase+ quartz±muscovite assemblages and implications for crustal melting. Jour. Geophys. Res. B: Solid Earth, v.100, pp. 15581–15591.CrossRefGoogle Scholar
  83. Gardiner, N.J., Hawkesworth, C.J., Robb, L.J., Whitehouse, M.J., Roberts, N.M., Kirkland, C.L. and Evans, N.J. (2017) Contrasting granite metallogeny through the zircon record: a case study from Myanmar. Scientific reports, v.7, pp. 748.CrossRefGoogle Scholar
  84. Glazner, A.F., 2007. Thermal limitations on incorporation of wall rock into magma. Geology, v.35, pp. 319–322.CrossRefGoogle Scholar
  85. Hammerli, J., Kemp, A.I.S. and Spandler, C. (2014) Neodymium isotope equilibration during crustal metamorphism revealed by in situ microanalysis of REE-rich accessory minerals. Earth Planet. Sci. Lett., v.392, pp. 133–142.CrossRefGoogle Scholar
  86. Harris, L.B. and Bédard, J.H. (2015) Interactions between continent-like ‘drift’, rifting and mantle flow on Venus: gravity interpretations and Earth analogues. Geol. Soc. London, Spec. Publ., v.401, pp. 327–356.CrossRefGoogle Scholar
  87. Harris, N., Vance, D. and Ayres, M. (2000) From sediment to granite: timescales of anatexis in the upper crust. Chem. Geol., v.162, pp. 155–167.CrossRefGoogle Scholar
  88. Harrison, T.M. and Watson, E.B. (1983) Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contr. Mineral. Petrol., v.84, pp. 66–72.CrossRefGoogle Scholar
  89. Harrison, T.M. and Watson, E.B. (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim. Cosmochim. Acta, v.48, pp. 1467–1477.CrossRefGoogle Scholar
  90. Hawkesworth, C. and Kemp, A. (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem. Geol., v.226, pp. 144–162.CrossRefGoogle Scholar
  91. Holland, T.J.B., Green, E.C.R. and Powell, R. (2018) Melting of Peridotites through to Granites: A Simple Thermodynamic Model in the System KNCFMASHTOCr. Jour. Petrol., v.59, pp. 881–900.CrossRefGoogle Scholar
  92. Holness, M.B. and Sawyer, E.W. (2008) On the pseudomorphing of melt-filled pores during the crystallization of migmatites. Jour. Petrol., v.49, pp. 1343–1363.CrossRefGoogle Scholar
  93. Holtz, F. and Barbey, P. (1991) Genesis of peraluminous granites II. Mineralogy and chemistry of the Tourem Complex (North Portugal). Sequential melting vs. restite unmixing. Jour. Petrol., v.32, pp. 959–978.CrossRefGoogle Scholar
  94. Hoskin, P.W. and Schaltegger, U. (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem., v.53, pp. 27–62.CrossRefGoogle Scholar
  95. Howie, R.A. (1955) The geochemistry of the charnockite series of Madras, India. Earth and Environmental Science Trans. Royal Soc. Edinburgh, v.62, pp. 725–768.CrossRefGoogle Scholar
  96. Iles, K.A., Hergt, J.M. and Woodhead, J.D. (2018) Modelling isotopic responses to disequilibrium melting in granitic systems. Jour. Petrol., v.59, pp. 87–113.CrossRefGoogle Scholar
  97. Ishihara, S. (1977) The magnetite-series and ilmenite-series granitic rocks. Mining Geol., v.27, pp. 293–305.Google Scholar
  98. Jagoutz, O.E., Burg, J.-P., Hussain, S., Dawood, H., Pettke, T., Iizuka, T. and Maruyama, S. (2009) Construction of the granitoid crust of an island arc part I: geochronological and geochemical constraints from the plutonic Kohistan (NW Pakistan). Contr. Mineral. Petrol., v.158, pp. 739–755.CrossRefGoogle Scholar
  99. Jeon, H. and Williams, I.S. (2018) Trace inheritance—Clarifying the zircon O-Hf isotopic fingerprint of I-type granite sources: Implications for the restite model. Chem. Geol., v.476, pp. 456–468.CrossRefGoogle Scholar
  100. Johnson, T., Hudson, N. and Droop, G. (2003) Evidence for a genetic granite-migmatite link in the Dalradian of NE Scotland. Jour. Geol. Soc. London., v.160, pp. 447–457.CrossRefGoogle Scholar
  101. Johnson, T.E., Clark, C., Taylor, R.J., Santosh, M. and Collins, A.S. (2015) Prograde and retrograde growth of monazite in migmatites: An example from the Nagercoil Block, southern India. Geosci. Front., v.6, pp. 373–387.CrossRefGoogle Scholar
  102. Jung, C., Jung, S., Nebel, O., Hellebrand, E., Masberg, P. and Hoffer, E. (2009) Fluid-present melting of meta-igneous rocks and the generation of leucogranites—Constraints from garnet major-and trace element data, Lu-Hf whole rock-garnet ages and whole rock Nd-Sr-Hf-O isotope data. Lithos, v.111, pp. 220–235.CrossRefGoogle Scholar
  103. Kelsey, D., Clark, C. and Hand, M. (2008) Thermobarometric modelling of zircon and monazite growth in melt bearing systems: Examples using model metapelitic and metapsammitic granulites. Jour. Metamorph. Geol., v.26, pp. 199–212.CrossRefGoogle Scholar
  104. Kelsey, D.E. and Powell, R. (2011) Progress in linking accessory mineral growth and breakdown to major mineral evolution in metamorphic rocks: a thermodynamic approach in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-ZrO2 system. Jour. Metamorph. Geol., v.29, pp. 151–166.CrossRefGoogle Scholar
  105. Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., Paterson, B.A., Woodhead, J.D., Hergt, J.M., Gray, C.M. and Whitehouse, M.J. (2007) Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, v.315, pp. 980–983.CrossRefGoogle Scholar
  106. Kemp, A.I.S., Hawkesworth, C.J., Paterson, B.A., Foster, G.L., Kinny, P.D, Whitehouse, M.J. and Maas, R. (2008) Exploring the plutonic-volcanic link: A zircon U-Pb, Lu-Hf and O isotope study of paired volcanic and granitic units from southeastern Australia. Earth and Environmental Science Trans. Royal Soc. Edinburgh, v.97, pp. 337–355.CrossRefGoogle Scholar
  107. Kilpatrick, J.A. and Ellis, D.J. (1992) C-type magmas: igneous charnockites and their extrusive equivalents. Earth and Environmental Science Trans. Royal Soc. Edinburgh, v.83, pp. 155–164.CrossRefGoogle Scholar
  108. Klimm, K., Blundy, J.D. and Green, T.H. (2008) Trace Element Partitioning and Accessory Phase Saturation during H2O-Saturated Melting of Basalt with Implications for Subduction Zone Chemical Fluxes. Jour. Petrol., v.49, pp. 523–553.CrossRefGoogle Scholar
  109. Koblinger, B. M. and Pattison, D. R.M. (2017). Crystallization of Heterogeneous Pelitic Migmatites: Insights from Thermodynamic Modelling. Jour. Petrol., v.58, p. 297–326.CrossRefGoogle Scholar
  110. Kohn, M.J., Corrie, S.L. and Markley, C. (2015) The fall and rise of metamorphic zircon. Am. Mineral., v.100, pp. 897–908.CrossRefGoogle Scholar
  111. Korhonen, F.J., Brown, M., Grove, M., Siddoway, C.S., Baxter, E. and Inglis, J.D. (2012) Separating metamorphic events in the Fosdick migmatite-granite complex, West Antarctica. Jour. Metamorph. Geol., v.30, pp. 165–192.CrossRefGoogle Scholar
  112. Korhonen, F.J., Saito, S., Brown, M. and Siddoway, C.S. (2010a) Modeling multiple melt loss events in the evolution of an active continental margin. Lithos, v.116, pp. 230–248.CrossRefGoogle Scholar
  113. Korhonen, F. J., Saito, S., Brown, M., Siddoway, C.S. and Day, J.M.D. (2010b) Multiple Generations of Granite in the Fosdick Mountains, Marie Byrd Land, West Antarctica: Implications for Polyphase Intracrustal Differentiation in a Continental Margin Setting. Jour. Petrol., v.51, pp. 627–670.CrossRefGoogle Scholar
  114. Kretz, R. (1983) Symbols for rock-forming minerals. Amer. Mineral., v.68, pp. 277–279.Google Scholar
  115. Kunz, B.E., Regis, D. and Engi, M. (2018) Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C? Contrib. Mineral. Petrol., v.173, pp. 26.CrossRefGoogle Scholar
  116. Lappin, A. and Hollister, L. (1980) Partial melting in the Central gneiss complex near Prince Rupert, British Columbia. Amer. Jour. Sci., v.280, pp. 518–545.CrossRefGoogle Scholar
  117. Laurent, O., Martin, H., Moyen, J.-F. and Doucelance, R. (2014) The diversity and evolution of late-Archean granitoids: Evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos, v.205, pp. 208–235.CrossRefGoogle Scholar
  118. Le Breton, N. and Thompson, A.B. (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contr. Mineral. Petrol., v.99, pp. 226–237.CrossRefGoogle Scholar
  119. Lee, Y. and Cho, M. (2013) Fluid-present disequilibrium melting in Neoarchean arc-related migmatites of Daeijak Island, western Gyeonggi Massif, Korea. Lithos, v.179, pp. 249–262.CrossRefGoogle Scholar
  120. Lehmann, B. (1990) Large-scale tin depletion in the Tanjungpandan tin granite, Belitung Island, Indonesia. Econ. Geol., v.85, pp. 99–111.CrossRefGoogle Scholar
  121. Li, W., Jackson, S.E., Pearson, N.J., Alard, O. and Chappell, B.W. (2009) The Cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia. Chem. Geol., v.258, pp. 38–49.CrossRefGoogle Scholar
  122. Li, X., Niu, M., Yakymchuk, C., Yan, Z., Fu, C. and Zhao, Q. (2018) Anatexis of former arc magmatic rocks during oceanic subduction: A case study from the North Wulan gneiss complex. Gondwana Res., v.61, pp. 128–149.CrossRefGoogle Scholar
  123. Linnen, R.L. (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li+ F; constraints for mineralization in rare metal granites and pegmatites. Econ. Geol., v.93, pp. 1013–1025.CrossRefGoogle Scholar
  124. Loiselle, M.C. and Wones, D.R. 1979. Characteristics and origin of anorogenic granites. In: Geological Society of America Abstracts with Programs. v.11, p. 468.Google Scholar
  125. London, D. (2014) Subsolidus isothermal fractional crystallization. Amer. Mineral., v.99, pp. 543–546.CrossRefGoogle Scholar
  126. Macera, P., Di Pisa, A. and Gasperini, D. (2011) Geochemical and Sr-Nd isotope disequilibria during multi-stage anatexis in a metasedimentary Hercynian crust. European Jour. Mineral., v.23, pp. 207–222.CrossRefGoogle Scholar
  127. Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F. and Champion, D. (2005). An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, v.79, pp. 1–24.CrossRefGoogle Scholar
  128. Martin, H., Moyen, J.-F. and Rapp, R. (2009) The sanukitoid series: magmatism at the Archaean-Proterozoic transition. Earth and Environmental Science Trans. Royal Soc. Edinburgh, v.100, pp. 15–33.Google Scholar
  129. Matzel, J.E., Bowring, S.A. and Miller, R.B. (2006) Time scales of pluton construction at differing crustal levels: Examples from the Mount Stuart and Tenpeak intrusions, North Cascades, Washington. Geol. Soc. Amer. Bull., v.118, pp. 1412–1430.CrossRefGoogle Scholar
  130. McCulloch, M.T. and Chappell, B.W. (1982) Nd isotopic characteristics of S- and I-type granites. Earth Planet. Sci. Lett., v.58, pp. 51–64.CrossRefGoogle Scholar
  131. Michel, J., Baumgartner, L., Putlitz, B., Schaltegger, U. and Ovtcharova, M. (2008) Incremental growth of the Patagonian Torres del Paine laccolith over 90 ky. Geology, v.36, pp. 459–462.CrossRefGoogle Scholar
  132. Milord, I., Sawyer, E.W. and Brown, M. (2001) Formation of Diatexite Migmatite and Granite Magma during Anatexis of Semi-pelitic Metasedimentary Rocks: an Example from St. Malo, France. Jour. Petrol., v.42, pp. 487–505.CrossRefGoogle Scholar
  133. Morfin, S., Sawyer, E.W. and Bandyayera, D. (2014) The geochemical signature of a felsic injection complex in the continental crust: Opinaca Subprovince, Quebec. Lithos, v.196–197, pp.339–355.CrossRefGoogle Scholar
  134. Moyen, J.-F. and Stevens, G. (2006) Experimental constraints on TTG petrogenesis: implications for Archean geodynamics. American Geophysical Union Geophysical Monograph, v.164, pp. 149.Google Scholar
  135. Moyen, J.-F. and Laurent, O. (2018) Archaean tectonic systems: A view from igneous rocks. Lithos, v.302–303, pp. 99–125.CrossRefGoogle Scholar
  136. Moyen, J.-F., Laurent, O., Chelle-Michou, C., Couzinié, S., Vanderhaeghe, O., Zeh, A., Villaros, A. and Gardien, V. (2017) Collision vs. subduction-related magmatism: two contrasting ways of granite formation and implications for crustal growth. Lithos, v.277, pp. 154–177.CrossRefGoogle Scholar
  137. Moyen, J.-F. and Martin, H. (2012) Forty years of TTG research. Lithos, v.148, pp. 312–336.CrossRefGoogle Scholar
  138. Nédélec, A. and Bouchez, J.-L. (2015) Granites: Petrology, Structure, Geological Setting, and Metallogeny. Oxford University Press, New York. 331p.CrossRefGoogle Scholar
  139. Newton, R.C. and Tsunogae, T. (2014) Incipient charnockite: Characterization at the type localities. Precambrian Res, v.253, pp. 38–49.CrossRefGoogle Scholar
  140. O’Neil, J.R. and Chappell, B.W. (1977). Oxygen and hydrogen isotope relations in the Berridale batholith. Jour. Geol. Soc., v.133, pp. 559–571.CrossRefGoogle Scholar
  141. O’Neil, J., Shaw, S. and Flood, R. (1977) Oxygen and hydrogen isotope compositions as indicators of granite genesis in the New England Batholith, Australia. Contr. Mineral. Petrol., v.62, pp. 313–328.CrossRefGoogle Scholar
  142. Palin, R.M., White, R.W., Green, E.C., Diener, J.F., Powell, R. and Holland, T.J. (2016) High grade metamorphism and partial melting of basic and intermediate rocks. Jour. Metamorph. Geol., v.34, pp. 871–892.CrossRefGoogle Scholar
  143. Pankhurst, R.J., Weaver, S.D., Bradshaw, J.D., Storey, B.C. and Ireland, T.R. (1998) Geochronology and geochemistry of pre Jurassic superterranes in Marie Byrd Land, Antarctica. Jour. Geophys. Res. B: Solid Earth, v.103, pp. 2529–2547.CrossRefGoogle Scholar
  144. Parnell, J., Hole, M., Boyce, A.J., Spinks, S. and Bowden, S. (2012) Heavy metal, sex and granites: Crustal differentiation and bioavailability in the mid-Proterozoic. Geology, v.40, pp. 751–754.CrossRefGoogle Scholar
  145. Patiño Douce, A.E. and Harris, N. (1998) Experimental constraints on Himalayan anatexis. Jour. Petrol., v.39, pp. 689–710.CrossRefGoogle Scholar
  146. Petford, N., Cruden, A., McCaffrey, K. and Vigneresse, J.-L. (2000) Granite magma formation, transport and emplacement in the Earth’s crust. Nature, v.408, pp. 669.CrossRefGoogle Scholar
  147. Petford, N., Kerr, R.C. and Lister, J.R. (1993) Dike transport of granitoid magmas. Geology, v.21, pp. 845–848.CrossRefGoogle Scholar
  148. Piccoli, P. and Candela, P. (1994) Apatite in felsic rocks; a model for the estimation of initial halogen concentrations in the Bishop Tuff (Long Valley) and Tuolumne Intrusive Suite (Sierra Nevada Batholith) magmas. Amer. Jour. Sci., v.294, pp. 92–135.CrossRefGoogle Scholar
  149. Pitcher, W.S. (1997) The Nature and Origin of Granite. Springer, Netherlands. 387p.CrossRefGoogle Scholar
  150. Pressley, R.A. and Brown, M. (1999) The Phillips pluton, Maine, USA: evidence of heterogeneous crustal sources and implications for granite ascent and emplacement mechanisms in convergent orogens. Lithos, v.46, pp. 335–366.CrossRefGoogle Scholar
  151. Rajesh, H. (2007) The petrogenetic characterization of intermediate and silicic charnockites in high-grade terrains: a case study from southern India. Contr. Mineral. Petrol., v.154, pp. 591–606.CrossRefGoogle Scholar
  152. Rajesh, H. and Santosh, M. (2004) Charnockitic magmatism in southern India. Journal of Earth System Science, v.113, pp. 565–585.CrossRefGoogle Scholar
  153. Rajesh, H. and Santosh, M. (2012) Charnockites and charnockites. Geosci. Front., v.3, pp. 737–744.CrossRefGoogle Scholar
  154. Rajesh, H., Santosh, M. and Yoshikura, S. (2010) The Nagercoil charnockite: a magnesian, calcic to calc-alkalic granitoid dehydrated during a granulite-facies metamorphic event. Jour. Petrol., v.52, pp. 375–400.CrossRefGoogle Scholar
  155. Rosenberg, C. and Handy, M. (2005) Experimental deformation of partially melted granite revisited: implications for the continental crust. Jour. Metamorph. Geol., v.23, pp. 19–28.CrossRefGoogle Scholar
  156. Rubatto, D. (2017) Zircon: the metamorphic mineral. Rev. Mineral. Geochem., v.83, pp. 261–295.CrossRefGoogle Scholar
  157. Rubatto, D., Williams, I.S. and Buick, I.S. (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contr. Mineral. Petrol., v.140, pp. 458–468.CrossRefGoogle Scholar
  158. Rudnick, R.L. and Fountain, D.M. (1995) Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, v.33, pp. 267–309.CrossRefGoogle Scholar
  159. Rutter, E.H. and Mecklenburgh, J. 2006. The extraction of melt from crustal protoliths and the flow behavior of partially molten crustal rocks: an experimental perspective. In: M. Brown and T. Rushmer. (Eds.), Evolution and Differentiation of the Continental Crust. Cambridge University Press.Google Scholar
  160. Samperton, K.M., Bell, E.A., Barboni, M., Keller, C.B. and Schoene, B. (2017) Zircon age-temperature-compositional spectra in plutonic rocks. Geology, v.45, pp. 983–986.CrossRefGoogle Scholar
  161. Samperton, K.M., Schoene, B., Cottle, J.M., Keller, C.B., Crowley, J.L. and Schmitz, M.D. (2015) Magma emplacement, differentiation and cooling in the middle crust: Integrated zircon geochronological-geochemical constraints from the Bergell Intrusion, Central Alps. Chem. Geol., v.417, pp. 322–340.CrossRefGoogle Scholar
  162. Sautter, V., Toplis, M., Wiens, R., Cousin, A., Fabre, C., Gasnault, O., Maurice, S., Forni, O., Lasue, J. and Ollila, A. (2015) In situ evidence for continental crust on early Mars. Nature Geoscience, v.8, pp. 605.CrossRefGoogle Scholar
  163. Savage, P.S., Georg, R.B., Williams, H.M., Turner, S., Halliday, A.N. and Chappell, B.W. (2012) The silicon isotope composition of granites. Geochim. Cosmochim. Acta, v.92, pp. 184–202.CrossRefGoogle Scholar
  164. Sawyer, E.W. (1991) Disequilibrium melting and the rate of melt-residuum separation during migmatization of mafic rocks from the Grenville Front, Quebec. Jour. Petrol., v.32, pp. 701–738.CrossRefGoogle Scholar
  165. Sawyer, E.W. (1998) Formation and evolution of granite magmas during crustal reworking: the significance of diatexites. Jour. Petrol., v.39, pp. 1147–1167.CrossRefGoogle Scholar
  166. Sawyer, E.W., Cesare, B. and Brown, M. (2011). When the continental crust melts. Elements, v.7, pp. 229–234.CrossRefGoogle Scholar
  167. Sawyer, E. (2014) The inception and growth of leucosomes: microstructure at the start of melt segregation in migmatites. Jour. Metamorph. Geol., v.32, pp. 695–712.CrossRefGoogle Scholar
  168. Sawyer, E.W. (1987) The Role of Partial Melting and Fractional Crystallization in Determining Discordant Migmatite Leucosome Compositions. Jour. Petrol., v.28, pp. 445–473.CrossRefGoogle Scholar
  169. Sawyer, E.W. (2008) Atlas of migmatites. NRC Research Press.Google Scholar
  170. Schaltegger, U., Brack, P., Ovtcharova, M., Peytcheva, I., Schoene, B., Stracke, A., Marocchi, M. and Bargossi, G.M. (2009) Zircon and titanite recording 1.5 million years of magma accretion, crystallization and initial cooling in a composite pluton (southern Adamello batholith, northern Italy). Earth Planet. Sci. Lett., v.286, pp. 208–218.CrossRefGoogle Scholar
  171. Schaltegger, U. and Davies, J.H. (2017) Petrochronology of zircon and baddeleyite in igneous rocks: Reconstructing magmatic processes at high temporal resolution. Rev. Mineral. Geochem., v.83, pp. 297–328.CrossRefGoogle Scholar
  172. Schoene, B. (2014) 4.10-U-Th-Pb Geochronology. Treatise on geochemistry, 2nd edition. v.4, pp. 341–378.CrossRefGoogle Scholar
  173. Schoene, B., Schaltegger, U., Brack, P., Latkoczy, C., Stracke, A. and Günther, D. (2012) Rates of magma differentiation and emplacement in a ballooning pluton recorded by U-Pb TIMS-TEA, Adamello batholith, Italy. Earth Planet. Sci. Lett., v.355, pp. 162–173.CrossRefGoogle Scholar
  174. Schwindinger, M. and Weinberg, R.F. (2017) A felsic MASH zone of crustal magmas—Feedback between granite magma intrusion and in situ crustal anatexis. Lithos, v.284, pp. 109–121.CrossRefGoogle Scholar
  175. Shen, B., Jacobsen, B., Lee, C.-T.A., Yin, Q.-Z. and Morton, D.M. (2009) The Mg isotopic systematics of granitoids in continental arcs and implications for the role of chemical weathering in crust formation. Proc. National Acad. Sci., v.106, pp. 20652–20657.CrossRefGoogle Scholar
  176. Shirey, S.B. and Hanson, G.N. (1984) Mantle-derived Archaean monozodiorites and trachyandesites. Nature, v.310, pp. 222–224.CrossRefGoogle Scholar
  177. Siddoway, C.S., Richard, S.M., Fanning, C.M., Luyendyk, B.P. and Whitney, D. (2004) Origin and emplacement of a middle Cretaceous gneiss dome, Fosdick Mountains, West Antarctica. Geol. Soc. Amer. Spec. Paper, pp.267–294.Google Scholar
  178. Skjerlie, K.P. and Johnston, A.D. (1992) Vapor-absent melting at 10 kbar of a biotite-and amphibole-bearing tonalitic gneiss: implications for the generation of A-type granites. Geology, v.20, pp. 263–266.CrossRefGoogle Scholar
  179. Slagstad, T., Jamieson, R.A. and Culshaw, N. (2005) Formation, crystallization, and migration of melt in the mid-orogenic crust: Muskoka domain migmatites, Grenville Province, Ontario. Jour. Petrol., v.46, pp. 893–919.CrossRefGoogle Scholar
  180. Solar, G.S. and Brown, M. (2001) Petrogenesis of Migmatites in Maine, USA: Possible Source of Peraluminous Leucogranite in Plutons? Jour. Petrol., v.42, pp. 789–823.CrossRefGoogle Scholar
  181. Stepanov, A.S., Hermann, J., Rubatto, D. and Rapp, R.P. (2012) Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chem. Geol., v.300, pp. 200–220.CrossRefGoogle Scholar
  182. Stevens, G. and Clemens, J.D. (1993) Fluid-absent melting and the roles of fluids in the lithosphere: a slanted summary? Chem. Geol., v.108, pp. 1–17.CrossRefGoogle Scholar
  183. Stevens, G., Villaros, A. and Moyen, J.-F. (2007) Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology, v.35, pp. 9–12.CrossRefGoogle Scholar
  184. Streckeisen, A. (1976) To each plutonic rock its proper name. Earth Sci. Rev., v.12, pp. 1–33.CrossRefGoogle Scholar
  185. Strong, D. (1981) Ore deposit models-5. A model for granophile mineral deposits. Geoscience Canada, v.8.Google Scholar
  186. Tang, M., Wang, X.-L., Shu, X.-J., Wang, D., Yang, T. and Gopon, P. (2014) Hafnium isotopic heterogeneity in zircons from granitic rocks: Geochemical evaluation and modeling of “zircon effect” in crustal anatexis. Earth Planet. Sci. Lett., v.389, pp. 188–199.CrossRefGoogle Scholar
  187. Tartèse, R. and Boulvais, P. (2010) Differentiation of peraluminous leucogranites “en route” to the surface. Lithos, v.114, pp. 353–368.CrossRefGoogle Scholar
  188. Taylor, H.P. (1968). The oxygen isotope geochemistry of igneous rocks. Contrib. Mineral. Petrol., v.19, pp. 1–71.CrossRefGoogle Scholar
  189. Taylor, J. and Stevens, G. (2010) Selective entrainment of peritectic garnet into S-type granitic magmas: Evidence from Archaean mid-crustal anatectites. Lithos, v.120, pp. 277–292.CrossRefGoogle Scholar
  190. Taylor, R.J., Kirkland, C.L. and Clark, C. (2016) Accessories after the facts: Constraining the timing, duration and conditions of high-temperature metamorphic processes. Lithos, v.264, pp. 239–257.CrossRefGoogle Scholar
  191. Thompson, A. (1983) Fluid-absent metamorphism. Jour. Geol. Soc. London, v.140, pp. 533–547.CrossRefGoogle Scholar
  192. Thompson, A.B. (1982) Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. Amer. Jour. Sci., v.282, pp. 1567–1595.CrossRefGoogle Scholar
  193. Tuttle, O.F. and Bowen, N.L. (1958). Origin of granite in the light of experimental studies in the system: NaAlSi3O8. Geol. Soc. Amer. Mem., v 74.Google Scholar
  194. Valley, J., Lackey, J., Cavosie, A., Clechenko, C., Spicuzza, M., Basei, M., Bindeman, I., Ferreira, V., Sial, A. and King, E. (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contr. Mineral. Petrol., v.150, pp. 561–580.CrossRefGoogle Scholar
  195. Vavra, G. (1994) Systematics of internal zircon morphology in major Variscan granitoid types. Contr. Mineral. Petrol., v.117, pp. 331–344.CrossRefGoogle Scholar
  196. Vigneresse, J.L., Barbey, P. and Cuney, M. (1996) Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. Jour. Petrol., v.37, pp. 1579–1600.CrossRefGoogle Scholar
  197. Vigneresse, J.L., Barbey, P. and Cuney, M. (1996) Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. Jour. Petrol., v.37, pp. 1579–1600.CrossRefGoogle Scholar
  198. Villaros, A., Stevens, G., Moyen, J.-F. and Buick, I.S. (2009) The trace element compositions of S-type granites: evidence for disequilibrium melting and accessory phase entrainment in the source. Contr. Mineral. Petrol., v.158, pp. 543–561.CrossRefGoogle Scholar
  199. Wall, V.J., Clemens, J.D. and Clarke, D.B. (1987) Models for granitoid evolution and source compositions. Jour. Geol., v.95, pp. 731–749.CrossRefGoogle Scholar
  200. Wang, W., Dunkley, E., Clarke, G.L. and Daczko, N.R. (2014) The evolution of zircon during low-P partial melting of metapelitic rocks: theoretical predictions and a case study from Mt Stafford, central Australia. Jour. Metamorph. Geol., v.32, pp. 791–808.CrossRefGoogle Scholar
  201. Watkins, J., Clemens, J.D. and Treloar, P.J. (2007) Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6–1.2 GPa. Contr. Mineral. Petrol., v.154, pp. 91–110.CrossRefGoogle Scholar
  202. Watson, E.B. (1979) Apatite saturation in basic to intermediate magmas. Geophys. Res. Lett., v.6, pp. 937–940.CrossRefGoogle Scholar
  203. Watson, E.B. and Harrison, T.M. (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett., v.64, pp. 295–304.CrossRefGoogle Scholar
  204. Watt, G.R. and Harley, S.L. (1993) Accessory phase controls on the geochemistry of crustal melts and restites produced during water-undersaturated partial melting. Contr. Mineral. Petrol., v.114, pp. 550–566.CrossRefGoogle Scholar
  205. Wawryk, C.M. and Foden, J.D. (2015) Fe-isotope fractionation in magmatic-hydrothermal mineral deposits: a case study from the Renison Sn-W deposit, Tasmania. Geochim. Cosmochim. Acta, v.150, pp. 285–298.CrossRefGoogle Scholar
  206. Weinberg, R.F. and Hasalová, P. (2015) Water-fluxed melting of the continental crust: A review. Lithos, v.212, pp. 158–188.CrossRefGoogle Scholar
  207. Whalen, J.B. (1985) Geochemistry of an island-arc plutonic suite: the Uasilau-Yau Yau intrusive complex, New Britain, PNG. Jour. Petrol., v.26, pp. 603–632.CrossRefGoogle Scholar
  208. Whalen, J.B., Currie, K.L. and Chappell, B.W. (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contr. Mineral. Petrol., v.95, pp. 407–419.Google Scholar
  209. White, A.J.R. and Chappell, B.W. (1974) Two contrasting granite types. Pacific Geology, v.8, pp. 173–174.Google Scholar
  210. White, A.J.R. (1979). Sources of granite magmas. In Geological Society of America Abstracts with Programs. p. 539.Google Scholar
  211. White, R.W., Stevens, G. and Johnson, T.E. (2011) Is the crucible reproducible? Reconciling melting experiments with thermodynamic calculations. Elements, v.7, pp. 241–246.CrossRefGoogle Scholar
  212. Whitney, J.A. (1988) The origin of granite: The role and source of water in the evolution of granitic magmas. Geol. Soc. Amer. Bull., v.100, pp. 1886–1897.CrossRefGoogle Scholar
  213. Williams, M.A., Kelsey, D.E., Baggs, T., Hand, M. and Alessio, K.L. (2018) Thorium distribution in the crust: Outcrop and grain-scale perspectives. Lithos, v.320–321, pp. 222–235.CrossRefGoogle Scholar
  214. Wolfram, L., Weinberg, R., Hasalová, P. and Becchio, R. (2017) How Melt Segregation Affects Granite Chemistry: Migmatites from the Sierra de Quilmes, NW Argentina. Jour. Petrol., v.58, pp. 2339–2364.CrossRefGoogle Scholar
  215. Wray, J.J., Hansen, S.T., Dufek, J., Swayze, G.A., Murchie, S.L., Seelos, F.P., Skok, J.R., Irwin III, R.P. and Ghiorso, M.S. (2013) Prolonged magmatic activity on Mars inferred from the detection of felsic rocks. Nature Geoscience, v.6, pp. 1013.CrossRefGoogle Scholar
  216. Wu, Y.B., Zheng, Y.F., Zhang, S.B., Zhao, Z.F., Wu, F.Y. and Liu, X.M. (2007) Zircon U-Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: constraints on partial melting. Jour. Metamorph. Geol., v.25, pp. 991–1009.CrossRefGoogle Scholar
  217. Yakymchuk, C. (2017a) Behaviour of apatite during partial melting of metapelites and consequences for prograde suprasolidus monazite growth. Lithos, v.274–275, pp. 412–426.CrossRefGoogle Scholar
  218. Yakymchuk, C. (2017b) Applying Phase Equilibria Modelling to Metamorphic and Geological Processes: Recent Developments and Future Potential. 2017, pp.27–45.Google Scholar
  219. Yakymchuk, C. and Brown, M. (2014a) Consequences of open-system melting in tectonics. Jour. Geol. Soc. London, v.171, pp. 21–40.CrossRefGoogle Scholar
  220. Yakymchuk, C. and Brown, M. (2014b) Behaviour of zircon and monazite during crustal melting. Jour. Geol. Soc. London, v.171, pp. 465–479.CrossRefGoogle Scholar
  221. Yakymchuk, C., Siddoway, C.S., Fanning, C.M., Mcfadden, R., Korhonen, F.J. and Brown, M. (2013a) Anatectic reworking and differentiation of continental crust along the active margin of Gondwana: a zircon Hf-O perspective from West Antarctica. Geol. Soc. London, Spec. Publ., v.383, pp. SP383. 387.CrossRefGoogle Scholar
  222. Yakymchuk, C., Brown, M., Ivanic, T.J. and Korhonen, F.J. (2013b) Leucosome distribution in migmatitic paragneisses and orthogneisses: A record of self-organized melt migration and entrapment in a heterogeneous partially-molten crust. Tectonophysics, v.603, pp. 136–154.CrossRefGoogle Scholar
  223. Yakymchuk, C., Brown, M., Clark, C., Korhonen, F.J., Piccoli, P.M., Siddoway, C.S., Taylor, R.J.M. and Vervoort, J.D. (2015a) Decoding polyphase migmatites using geochronology and phase equilibria modelling. Jour. Metamorph. Geol., v.33, pp. 203–230.CrossRefGoogle Scholar
  224. Yakymchuk, C., Brown, C.R., Brown, M., Siddoway, C.S., Fanning, C.M., and Korhonen, F.J. (2015b) Paleozoic evolution of western Marie Byrd Land, Antarctica. Geol. Soc. Amer. Bull., v.127, pp. 1464–1484.CrossRefGoogle Scholar
  225. Yakymchuk, C., Clark, C. and White, R.W. (2017). Phase Relations, Reaction Sequences and Petrochronology In: M.J. Kohn and P. Lanari (Eds), Petrochronology, pp. 13–53.Google Scholar
  226. Yakymchuk, C., Kirkland, C.L. and Clark, C. (2018) Th/U ratios in metamorphic zircon. Jour. Metamorph. Geol., v.36, pp. 715–737.CrossRefGoogle Scholar
  227. Yamato, P., Duretz, T., May, D.A. and Tartese, R. (2015) Quantifying magma segregation in dykes. Tectonophysics, v.660, pp. 132–147.CrossRefGoogle Scholar
  228. Yardley, B.W. and Valley, J.W. (1997) The petrologic case for a dry lower crust. Jour. Geophys. Res. B: Solid Earth, v.102, pp. 12173–12185.CrossRefGoogle Scholar
  229. Zeck, H. and Williams, I. (2002) Inherited and Magmatic Zircon from Neogene Hoyazo Cordierite Dacite, Se Spain—anatectic Source Rock Provenance and Magmatic Evolution: in Memoriam Professor Chris Powell, 2001.07. 21. Jour. Petrol., v.43, pp. 1089–1104.CrossRefGoogle Scholar
  230. Zeng, L., Asimow, P.D. and Saleeby, J.B. (2005) Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source. Geochim. Cosmochim. Acta, v.69, pp. 3671–3682.CrossRefGoogle Scholar
  231. Zeng, L., Saleeby, J.B. and Asimow, P. (2005) Nd isotope disequilibrium during crustal anatexis: A record from the Goat Ranch migmatite complex, southern Sierra Nevada batholith, California. Geology, v.33, pp. 53–56.CrossRefGoogle Scholar

Copyright information

© GEOL. SOC. INDIA 2019

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesUniversity of WaterlooWaterlooCanada

Personalised recommendations