Advertisement

Journal of the Geological Society of India

, Volume 93, Issue 6, pp 693–703 | Cite as

Drainage Pattern and its Bearing on Relative Active Tectonics of a Region: A Study in the Son Valley, Central India

  • R. K. DubeyEmail author
  • Ravi Shankar
Research Articles

Abstract

The paper emphasis the participation of different geomorphic parameters related to various characteristics of drainage in evaluation of active tectonics of an area. For the purpose, the morphotectonic evaluations of the Son valley, central India have been carried by involving various drainage related geomorphic indices viz., stream-gradient index (SL), hypsometric integral (HI), drainage basin asymmetry (AF), valley floor height and width ratio (Vf), transverse topographic symmetry factor (T), mountain front sinuosity (Smf), drainage basin shape (BS) and sinuosity index (SI) and relative rock strength (RRS) for classification of relative index of active tectonics (RIAT) in geographic information systems (GIS) environment to understand the role of active tectonics in geomorphologic evolution of the studied region. The established RIAT classes through field validations categorize the valley into four zones such as class 1- low activity (RIAT < 2.7); class 2-moderate activity (RIAT =2.7 < 2.99); class 3- high activity (RIAT=2.99 < 3.29); and class 4-very high activity (RIAT>3.29). The sub-dendritic, rectilinear and parallel linear drainage styles in RIAT classified basin reveal the traverse of a network of seventeen faults in association with two major faults namely Son-Narmada-North Fault (SNNF) and Son-Narmada South Fault (SNSF) in variable associations of rocks and multiple types of structural elements present in the Son valley. The signature of vertical upliftments may indicate the instability tectonic activities along the identified network of faults associated with SNNF and SNSF. Hence, the study suggests variable tectonically activeness of area in the Son valley.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The authors thankfully acknowledge the financial assistance provided by UGC, New Delhi under the project File No. 41-1038/2012(SR), Department of Atomic Energy, Government of India under the research projects no. 2013/36/56-BRNS/2447. Further, the authors are thankful to the Director, Indian School of Mines, Dhanbad-826 004 for his inspirations and support. The authors are grateful to learned reviewers for their comments regarding improvements in the paper. The authors are thankful to Shri Gyan Prakash Satyam, UGC-CSIR JRF (New Delhi), ISM, Dhanbad

References

  1. Acharrya, S. K., (2003) The Nature of Mesoproterozoic Central Indian Tectonic Zone with Exhumed and Reworked Older Granulites. Gondwana Res., v.6, pp.197–214.CrossRefGoogle Scholar
  2. Alipoor, R., Poorkermani, E., Zare, M., El Hamdouni, R., (2011) Active tectonic assessment around Rudbar Lorestan dam site, High Zagros Belt (SW Iran). Geomorphology, v.128(1–2), pp.1–14.CrossRefGoogle Scholar
  3. Azor, A., Keller, E.A., Yeats, R.S., (2002) Geomorphic indicators of active fold growth: South Mountain-Oak Ridge Ventura basin, Southern California. Geol. Soc. Amer. Bull., v.114, pp.745–753.CrossRefGoogle Scholar
  4. Banerjee, M., Bhattacharya, D., Singh, H. N., and Shanker, D., (2010) Evaluation of Hydrogeology of the lower Son Valley based on Remote Sensing data. Jour. Geographic Information System, v.2, pp.220–227.Google Scholar
  5. Bull, W.B., (1978) Geomorphic Tectonic Classes of the South Front of the San Gabriel Mountains, California. Ofûce of Earthquakes, Volcanoes and Engineering, Menlo Park, CA. USGS Contract Report, 14-08-001-G pp.394.Google Scholar
  6. Bull, W.B., (2007) Tectonic geomorphology of mountains: a new approach to paleoseismology. Blackwell, Malden., pp.10–80.CrossRefGoogle Scholar
  7. Bull, W.B., and McFadden, L.D. (1977) Tectonic geomorphology north and south of the Garlock fault, California. In: Doehring, D.O. (Ed.), Geomorphology in Arid Regions. Proceedings of the Eighth Annual Geomorphology Symposium, State University of New York, Binghamton, pp.15–138.Google Scholar
  8. Burbank, D.W. and Anderson, R.S. (2001) Tectonic geomorphology. Blackwell Science, Malden, MA, v.91, pp.746–774.Google Scholar
  9. Cannon, P.J. (1976) Generation of explicit parameters for a quantitative geomorphic study of Mill Creek drainage basin. Oklahoma Geology Notes, v.36(1), pp.3–16.Google Scholar
  10. Chen, Y.C., Sung, Q.C. and Cheng K.Y. (2003) Along-strike variations of morphotectonic features in the western foothills of Taiwan: tectonic implications based on stream gradient and hypsometric analysis, Geomorphology, v.56, pp.13–109.CrossRefGoogle Scholar
  11. Chopra, N. (2012) Land use planning of southern part of Sonbhadra district, U.P., using Remote Sensing Techniques, Int. Jour. Geomatics and Geosciences, v.2(4), pp.924–938.Google Scholar
  12. Chopra, R., Dhiman, R.D. and Sharma, E.K. (2005) Morphometric analysis of sub-watersheds in Gurdaspur District, Punjab using Remote Sensing and GIS techniques. Jour. Indian Soc. Remote Sensing, v.33(4), pp.531–539.CrossRefGoogle Scholar
  13. Cox, R.T. (1994) Analysis of drainage basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: an example from the Mississippi Embayment. Geol. Soc. Amer. Bull., v.106, pp.571–581.CrossRefGoogle Scholar
  14. Dar, J.A., and Dubey, R.K. (2013b) Deformation and Neotectonics of Sub-Himalaya of Kashmir Valley, India: A Remote Sensing and GIS Approach. Inter. Jour. Earth Sci. Engg., v.6(5), pp.940–947.Google Scholar
  15. Delcaillau, B., Deffontaines, B., Angelier, J., De’ramond, J., Floissac, L., Souquet, P., Chu, H.T. (1998) Morphotectonic evidence from lateral propagation of an active frontal fold; the Pakuashan anticline, foothills of Taiwan. Geomorphology, v.24, pp.263–290.CrossRefGoogle Scholar
  16. El-Hamdouni, R., Irigaray, C., Fernandez, T., Chacón, J. and Keller, E.A. (2008) Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology, v.96, pp.150–173.CrossRefGoogle Scholar
  17. Etchebehere, M.L.C., Saad, A.R., Perinotto, J.A.J. and Fulfaro, V.J. (2004) Aplicação do Índice “Relação Declividade-Extensão — RDE” na Bacia do Rio do Peixe (SP) para detecção de deformações neotectônicas. Revista do Instituto de Geociências USP, Série Científica, São Paulo, v.4(2), pp.43–56.Google Scholar
  18. Etchebehere, M.L.C., Saad, A.R., Santoni, G.C., Casado, F.C. and Fulfaro, V.J. (2006) Detecção de prováveis deformaçães neotectônicas no vale do Rio do Peixe, região ocidental paulista mediante aplicação de indices RDE (Relação Declividade-Extensão) em segmentos de drenagem. Geociências, v.25, pp.271–289.Google Scholar
  19. Gardner, T.W., Sasowsky K.C. and Rick, L.D. (1990) Automated extraction of geomorphometric properties from digital elevation data. Jour. Geomorph. N.F., Suppl.-Bd, v.80, pp.57–68.Google Scholar
  20. Ghosh, G.K. and Singh, C.L. (2013) Intrusion and upliftment of Mahakoshal rocks between Vindhyan and Gondwana in Narmada Son Lineament, Central India. Jour. Geol. Soc. India, v.81, pp.556–564.CrossRefGoogle Scholar
  21. Hack, J.T. (1973) Stream-profiles analysis and stream-gradient index. Jour. Res. USGS, v.1, pp.421–429.Google Scholar
  22. Hare, P.W., and Gardner, T.W., (1985). Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. In: Morisawa, M., Hack, J.T. (Eds.), Tectonic Geomorphology. Proceedings of the 15th Annual Binghamton Geomorphology Symposium. Allen and Unwin, Boston, MA, pp. 123–134.Google Scholar
  23. Jain, S.C., Nair, K.K.K. and Yedekar, D.B. (1995) Geology of the Son-Narmada-Tapti lineament zone in Central India. Project CRUMANSONATA, Geol. Surv. India Spec. Publ., v.10, pp.1–154.Google Scholar
  24. Jain, V. and Sinha, R. (2005) Response of active tectonics on the Alluvial Baghmati river, Himalayan foreland basin, eastern India. Geomorphology, v.70, Nos.3–4, pp.339–356CrossRefGoogle Scholar
  25. Keller, E.A., (1986): Investigation of active tectonics: use of surficial Earth processes. In: Wallace, R.E. (Ed.), Active Tectonics, Studies in Geophysics. National Academy Press, Washington, DC, pp.136–147.Google Scholar
  26. Keller, E.A. and Pinter, N., (2002) Active Tectonics: Earthquakes, Uplift and Landscape. Prentice Hall, New Jersey, pp.362.Google Scholar
  27. Kothyari, G.C. and Rastogi, B.K. (2013) Tectonic control on drainage network evolution in the Upper Narmada Valley: Implication to Neotectonics, Hindawi Publishing Corporation, Geography Jour., pp. 1–9.Google Scholar
  28. Kumar, R., (1998) Fundamentals of historical geology and stratigraphy of India, pp.1–268.Google Scholar
  29. Mall, D.M., Singh, A.P. and Sarkar, D. (2005) Structure and seismotectonics of Satpura, Central India. Curr. Sci., v.88(10), pp.1621–1627.Google Scholar
  30. Mayer, L., (1990) Introduction to Quantitative Geomorphology; an exercise manual, Englewood Cliffs, New Jersey, Prentice Hall, pp.380.Google Scholar
  31. Menon, R., Kumar, P.S., Reddy, G.K., and Srinivasan, R. (2003) Radiogenic heat production of late Archaean Bundelkhand granite and some Proterozoic gneisses and granitoids of Central India, Curr. Sci., v.85, pp.5.Google Scholar
  32. Missura, R., (2005): Análise morfoestratigráfica da Bacia do Ribeirão dos Poncianos/MG. Rio Claro, Tese (Mestrado) — Universidade Estadual Paulista. Unpublished, pp.136.Google Scholar
  33. Moglen, G.E. and Bras, R.L., (1995): The importance of spatially heterogeneous erosivity and the cumulative area distribution within a basin evolution model. Geomorphology, v.12, pp.173–185.CrossRefGoogle Scholar
  34. Monteiro, K.A., (2010): Superfícies de aplainamento e morfogênese da bacia do rio Tracunhaem, Pernambuco. Recife, Tese (Mestrado) — Universidade Federal de Pernambuco, pp.124.Google Scholar
  35. Montgomery, D. R., Abbe, T. B., Peterson, N. P., Buffington, J. M., Schmidt, K., and Stock, J. D., (1996) Distribution of bedrock and alluvial channels in forested mountain drainage basins. Nature (London), v.381, pp.587–589.CrossRefGoogle Scholar
  36. Naidu, G. D., and Harinarayana, T., (2009) Deep electrical imaging of the Narmada-Tapti region, central India from magnetotellurics. Tectonophysics, v.476, pp.538–549.CrossRefGoogle Scholar
  37. Nair, K.K.K., Jain, S.C. and Yedekar, D.B., (1995): Stratigraphy, structure and geochemistry of the Mahakoshal greenstone belt, Geol Soc India Mem., v.31, pp.403–432.Google Scholar
  38. Pedrera, A., Pérez-Peñ, J.V., Galindo-Zaldívar, J., Azañón, J.M., and Azor, A., (2009) Testing the sensitivity of geomorphic indices in areas of low-rate active folding (eastern Betic Cordillera, Spain), Geomorphology, v.105, pp.218–231.CrossRefGoogle Scholar
  39. Perez-Pena, J. V., Azañón, J. M., Azor, A., Tuccimei, P., Della Seta, M., and Soligo, M., (2009) Quaternary landscape evolution and erosion rates for an intramontane Neogene basin (Guadix-Baza basin, SE Spain), Geomorphology, v.106, pp.206–218.CrossRefGoogle Scholar
  40. Perez-Pena, J. V., Azor, A., Azañón J. M., and Keller E. A., (2010) Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indeces and drainage pattern analysis, Geomorphology, v.119, pp.74–87.CrossRefGoogle Scholar
  41. Pike, R.J., and Wilson, S.E., (1971) Elevation-relief ratio, hypsometric integral and geomorphic area-altitude analysis. Geol. Soc. Amer. Bull., v.82, pp.1079–1084.CrossRefGoogle Scholar
  42. Ramirez-Herrera, M. T., (1998): Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic belt. Earth Surface Processes and Landforms, v.23, pp.317–332.CrossRefGoogle Scholar
  43. Reineck, H.E. and Singh, I.B. (1980) Depositional sedimentary environments: Springer-Verlag, New York, 2nd edition, v.19, pp.549.CrossRefGoogle Scholar
  44. Rockwell, T. K., Keller, E. A. and Johnson, D. L. (1985) Tectonic geomorphology of alluvial fans and mountain fronts near Ventura, California. In: Morisawa, M. (Ed.), Tectonic Geomorphology. Proceedings of the 15th Annual Geomorphology Symposium. Allen and Unwin Publishers, Boston, pp.183–207.Google Scholar
  45. Roy, A., and Bandyopadhyay, B.K., (1990) Tectonic and structural pattern of the Mahakoshal belt of Central India — A discussion. Geol. Surv. India, Spec. Publ., v.28, pp.226–240.Google Scholar
  46. Ramirez-Herrera, M.T. (1998) Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic belt. Earth Surface Processes and Landforms, v.23, pp.317–332.CrossRefGoogle Scholar
  47. Schumm, S.A., Dumont, J.F., Holbrook, J.M. (2000) Active Tectonics and Alluvial Rivers. Cambridge University Press, Cambridge, pp.276–284.Google Scholar
  48. Seeber, L. and Gornitz, V. (1983) River profiles along the Himalayan arc as indicators of active tectonics. Tectonophysics, v.92(4), pp.335–367.CrossRefGoogle Scholar
  49. Silva, P.G., Goy, J.L., Zazo, C. and Bardajm, T. (2003) Fault generated mountain fronts in Southeast Spain: geomorphologic assessment of tectonic and earthquake activity. Geomorphology, v.250, pp.203–226.CrossRefGoogle Scholar
  50. Singh, C.K. and Srivastava, V. (2011) Morphotectonics of the area around Renukoot, district Sonbhadra U.P. using remote sensing and GIS techniques. Jour. Indian Soc. Remote Sensing, v.39(2), pp.235–240.CrossRefGoogle Scholar
  51. Singh, S., and Singh, M.C., (1997): Morphometric analysis of Kanhar River basin. National Geographical. Jour. India, v.43(1), pp.31–43.Google Scholar
  52. Singh, Y., and Krishna, V. (2009) Rb-Sr Geochronology and Petrogenesis of Granitoids from the Chhotanagpur Granite Gneiss Complex of Raikera-Kunkuri Region, Central India. Jour. Geol Soc. India, v.74, pp.200–208.CrossRefGoogle Scholar
  53. Srivastava, V.K., (1997): Study of drainage pattern of Jharia coalfield (Bihar), India, through Remote Sensing Technology. Jour. Indian Soc. Remote Sensing, v.25(1), pp.41–46.CrossRefGoogle Scholar
  54. Srivastava, V.K. and Mitra, D. (1995) Study of drainage pattern of Raniganj Coalfield (Burdwan district) as observed on Landsat-TM/IRS LISS II imagery, Jour. Indian Soc. Remote Sensing, v.23, pp.225–235.CrossRefGoogle Scholar
  55. Strahler, A.N., (1957) Hypsometric (area-altitude) analysis of erosional topography. Geol. Soc. America Bull., v.63, pp.1117–1142.CrossRefGoogle Scholar
  56. Troiani, F. and Seta, D.M., (2008) The use of the Stream Length-Gradient Index in morphotectonic analysis of small catchments: A case study from Central Italy. Geomorphology, v.102(1), pp.159–168.CrossRefGoogle Scholar
  57. Vittala, S. S., Govindaiah, S., and Gowda, H.H. (2008) Prioritization of sub-watersheds for sustainable development and management of natural resources: An integrated approach using Remote Sensing, GIS and socioeconomic data. Curr. Sci., v.95(3), pp.345–354.Google Scholar
  58. West, T.R. (2010) Geology applied and engineering. Waveland Press Inc., IL, pp.79.Google Scholar
  59. Yedekar, D.H., Jain, S.C., Nair, K.K.K. and Dutta, K.K., (1990) The central Indian collision suture. Precambrian of Central India. Geol. Surv. India, Nagpur, Spec. Publ., v.28, pp.1–43.Google Scholar

Copyright information

© GEOL. SOC. INDIA 2019

Authors and Affiliations

  1. 1.Department of Applied GeologyIndian Institute of Technology (Indian School of Mines)DhanabadIndia

Personalised recommendations