Advertisement

Journal of the Geological Society of India

, Volume 93, Issue 6, pp 684–692 | Cite as

Comparative Evaluation of GIS Based Landslide Hazard Zonation Maps Using Different Approaches

  • Laxmi Devi VersainEmail author
  • Rajeshwar Singh Banshtu
  • Desh Deepak Pandey
Research Articles
  • 8 Downloads

Abstract

Natural hazards like landslides in lesser Himalayan region of district Kullu (HP) India, owe to its typical geomorphic setting, variations in relief, precipitation during monsoon, thick forest cover, presence of glacier and glacial lakes along the higher reaches and various anthropogenic activities. Landslide locations, types and factor influencing the slope details are collected through the field visits and past record of landslides were used for development of inventory. Ancillary data are used for generation of different thematic layers (aspect, drainage density, geology, land cover, lineament density, relief, slope, and soil). Weight of evidence (WOE), information value(IV) and frequency ratio (FR) methods are used for generation of landslide hazard zonation (LHZ) maps which were classified into four zones namely high, moderate, low and very low. Validation and comparison of these hazard maps was done through the successive rate curve method which showed almost similar results, this proved the accuracy of these methods for generation of LHZ maps (WOE 80.01%, IV81.54% and frequency ratio 83.21%).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleotti, P. and Chowdhury, R. (1999) Landslide Hazard Assessment: Summary Review and New Perspectives. Bull. Engg. Geol. Environ., v.58(1), pp.21–44.CrossRefGoogle Scholar
  2. Anbalagan, R. and Singh, B. (1996) Landslide Hazard and Risk Assessment Mapping of Mountainous Terrains-A Case Study from Kumaun Himalaya, India. Engg. Geol., v.43, pp.237–246.CrossRefGoogle Scholar
  3. Anbalagan, R., Chakraborty, D. and Kohli, A. (2008) Landslide hazard zonation [LHZ] mapping on meso-scale for systematic planning in mountainous terrain. Jour. Scientific & Industrial Res., v.67, pp.486–497.Google Scholar
  4. Banshtu, R.S. and Versain, Laxmi D. (2015) An inventory study on Landslide Hazard Zonation of Kullu Valley of Central Himalayan zone, Himachal Pradesh, India. Internat. Conf. Food Nutrition and Civil Engg., Dubai (UAE).Google Scholar
  5. Bonham-Carter, G. F. (1994) Geographic Information Systems for Geoscientists: Modelling with GIS. Pergamon, Oxford.Google Scholar
  6. Burrard, S.G. and Hayden, H.H. (1933) A sketch of the geography and geology of the Himalaya mountains and Tibet. Second edition. Geological Survey of India.Google Scholar
  7. Census (2011) Ministry of home affairs, Govt. of India, http://www.censusindia.gov.in/2011-common/census_2011.html.
  8. Chandel, V.B.S, Brar, K.K. and Chauhan, Y. (2011) R S and GIS Based Landslide Hazard Zonation of Mountainous Terrains A Study from Middle Himalayan Kullu District, Himachal. Internat. Jour. Geo-informatics and Geo-sciences, v.2, pp.121–132.Google Scholar
  9. Choubey, V.D. and Litoria, P.K. (1990) Terrain Classification and Landslide Hazard Mapping in Kalsi-Chakratann Area [Garhwal Himalaya], India. ITC Jour., v.1, pp 65–68.Google Scholar
  10. Choubey, V.M., Mukherjee, P.K., Bajwa, B.S. and Walia, V. (2007). Geological and Tectonic Influence on Water-Soil-Radon Relationship in Mandi-Manali Area, Himachal Himalaya. Environ. Geol., v.52, pp.1163–1171.CrossRefGoogle Scholar
  11. Chung C.J.F. and Fabbri A.G. (2003) Validation of spatial prediction models for landslide hazard mapping. Nat. Hazards, v.30(3), pp.451–472.  https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b CrossRefGoogle Scholar
  12. Corominas J., Westen Van, Frattini C., Cascini, P., Malet P., Fotopoulou S., Catani F., Van M., Eeckhaut Den Mavrouli O., Agliardi, F., Pitilakis K, Winter M.G., Pastor M., Ferlisi S. Tofani V., Hervás J. and Smith J.T. (2014) Recommendations for the quantitative analysis of landslide risk. Engg. Geol. Environ., v.73(2), pp.209–263.Google Scholar
  13. Dai, F.C. and Lee, C.F. (2002) Landslide Characteristics and Slope Instability Modeling using GIS, Lantau Island, Hong Kong. Geomorphology, v.42, pp. 213–238.CrossRefGoogle Scholar
  14. Foody, G.M., Campbell, N.A., Trodd, N.M., and Wood, T.F. (1992) Derivation and applications of probabilistic measures of class membership from the maximum likelihood classification. Photogrammetric Engineering and Remote Sensing, v.58, pp.1335–1341.Google Scholar
  15. Frattini, P., Crosta, G. and Carrara, A. (2010) Techniques for evaluating the performance of landslide susceptibility models. Engg. Geol., v.111(1–4), pp.62–72. doi:  https://doi.org/10.1016/j.enggeo.2009.12.004.CrossRefGoogle Scholar
  16. Gupta, R.P. and Joshi, B.C. (1990) Landslide Hazard Zonation Using the GIS Approach-A Case Study from the Ramganga Catchment, Himalayas. Engg. Geol., v.28, pp.119–131. doi: https://doi.org/10.1016/0013-7952(90)90037-2.CrossRefGoogle Scholar
  17. Guzetti, F., Mondini, A.C., Cardinali, M., Fiorucci, F., Santangelo, M. and Chang, K-T. (2012) Landslide inventory maps: New tools for an old problem. Earth Sciences. Revised, v.112, pp.42–66.CrossRefGoogle Scholar
  18. Hamza, T. and Raghuvanshi, T.K. (2016) GIS based landslide hazard evaluation and zonation — A case from Jeldu District, Central Ethiopia. Jour. King Saud Univ. Science, pp.151–165.Google Scholar
  19. Jaiswal, P., van Westen, C.J. and Jetten, V. (2011b) Quantitative assessment of landslide hazard along transportation lines using historical records. Landslides, v.8(3), pp.279–291.CrossRefGoogle Scholar
  20. Guzzetti, F., Reichenbach, P., Ardizzone, M., Cardinali, M. and Galli, M. (2006) Estimating the quality of landslides susceptibility models. Geomorphology, v.81(1–2), pp.166–184. doi: https://doi.org/10.1016/j.geomorph.2006.04.007.CrossRefGoogle Scholar
  21. Kayastha, S.L. (1964) The Himalayan Beas Basin: A Study in Habitat, Economy and Society. Banaras Hindu University, Varanasi Press.Google Scholar
  22. Lee Saro and Min Kyungduck (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ. Geol., pp.1095–1113.Google Scholar
  23. Lin, M.L. and Tung, C.C. (2003) A GIS-Based Potential Analysis of the Landslides induced by the Chi-Chi Earthquake. Engg. Geol., v.71, pp.63–77.CrossRefGoogle Scholar
  24. Mathew, J., Jha, V.K. and Rawat, G.S. (2007) Weights of Evidence Modelling for Landslide Hazard Zonation Mapping in Part of Bhagirathi valley, Uttarakhand. Curr. Sci., v.92(5), pp.628–638.Google Scholar
  25. NATMO (2014) National Atlas and Thematic Mapping Organisation, Department of Science & Technology, Calcutta, India.Google Scholar
  26. Pachauri, A.K. and Pant, M. (1992) Landslide Hazard Mapping Based on Geological Attributes. Engg. Geol., v.32, pp.81–100.CrossRefGoogle Scholar
  27. Prasad Abhay, Pandey S., Bindhy W., Leimgruber Walter and Kunwar Ripu M. (2016) Mountain hazard Susceptibility and livelihood security in the upper catchment area of the river Beas, Kullu Valley, Himachal Pradesh, India. Geo-environmental Disasters, pp-1–17.Google Scholar
  28. Rawat, P. (2013) GIS modeling on mountain geodiversity and its hydrological resources; in view of climate change, Saarbrücken: Lambert Academic Publishing.Google Scholar
  29. Richards, J.A. and Jia, X. (1999) Remote Sensing Digital Image Analysis: An Introduction. 3rd Edition, Springer-Verlag, Heidelberg, Germany.CrossRefGoogle Scholar
  30. Shankar, R. and Dua, K.J.S. (1978) On the Existence of a Tear Fault Along Upper Beas Valley, District Kulu, Himachal Pradesh, and its Bearing on the Thermal Activity. Himalayan Geol., v.8(1), pp.466–472.Google Scholar
  31. Saaty, T.L. (1980) The Analytical Hierarchy Process: McGraw Hill, NY, 350p.Google Scholar
  32. Sah, M.P. and Mazari, R.K. (2007) An Overview of the Geo-environmental Status of the Lahaul Valley, Himachal Pradesh, India. Jour. Mountain Sci., v.4(1), pp.3–23.CrossRefGoogle Scholar
  33. Saha, A.K., Gupta, R.P., Sarkar, I., Arora, M.K. and Csaplovics, E. (2005) An approach for GIS Based Statistical Landslide Susceptibility Zonation with a Case Study in the Himalayas. Landslides, v.2, pp.61–69.CrossRefGoogle Scholar
  34. Sharma, M. and Kumar, R. (2008) GIS-Based Landslide Hazard Zonation: A Case Study from the Parwanoo Area, Lesser and Outer Himalaya, H.P., India. Bull. Engg. Geol. Environ., v.67, pp.129–137.CrossRefGoogle Scholar
  35. Van Westen, C.J., Rengers, N., Terlien, M.T.J., Soeters, R. (1997) Prediction of the occurrence of slope instability phenomenal through GIS-based hazard zonation. Geologische Rundschau, v.86(2), pp.404–414CrossRefGoogle Scholar
  36. Van Westen, C.J., Van Duren, I., Kruse, H.M.G., Terlien, M.T.J. (1993) GISSIZ: training package for geographic information systems in slope instability zonation. ITC publ no. 15, vols. 1 and 2. ITC, Enschede, The Netherlands.Google Scholar
  37. Van Westen, C.J. (2000) The Modeling of Landslide Hazards Using GIS. Geophysics, v.21, pp.241–255.Google Scholar
  38. Van Westen C.J., Jaiswal Pankaj, Ghosh Saibal, Martha Tapas, R. and Sekhar L. Kuriakose (2006) Landslide Inventory, Hazard and Risk Assessment in India. In: B. Pradhan and M. Buchroithner (Eds.), Terrigenous Mass Movements, Springer-Verlag Berlin Heidelberg, DOI:  https://doi.org/10.1007/978-3-642-25495-6_9.Google Scholar
  39. Yin, K.L. and Yan, T.Z. (1988) Statistical Prediction Model for Slope Instability of Metamorphosed Rocks. In: Bonnard, C. (Ed.), Proc. 5th Internat. Symp. on Landslides, v.2, pp.1269–1272.Google Scholar

Copyright information

© GEOL. SOC. INDIA 2019

Authors and Affiliations

  • Laxmi Devi Versain
    • 1
    Email author
  • Rajeshwar Singh Banshtu
    • 1
  • Desh Deepak Pandey
    • 1
  1. 1.Department of Civil EngineeringNational Institute of TechnologyHamirpurIndia

Personalised recommendations