Journal of the Geological Society of India

, Volume 93, Issue 6, pp 657–662 | Cite as

Geodynamic Significance of Cr-spinels from Ophiolite Mantle Peridotites of Northwestern Himalaya

  • I. M. BhatEmail author
  • T. Ahmad
  • D. V. Subba Rao
Research Articles


In this contribution the composition of Cr-spinels from Suru valley ophiolite peridotites is described and compared these with published data from Shergol serpentinized peridotites, both of these sequences occur as dismembered ophiolite blocks along the Indus suture zone (ISZ), Ladakh Himalaya and those from Manipur ophiolite belong to the eastern Himalaya. Back scattered electron images reveal that the Cr-spinel have overgrowth of magnetite, which is the dominant textural feature of the investigated rock types. However, in few peridotite samples, gradual replacement of Cr-spinel by ferrian-chromite along grain boundaries commonly occurs. Based on the spinel geochemistry, the Shergol peridotites are characterized by Cr-poor/Al-rich Cr-spinels whereas, the Suru valley peridotites by Cr-rich/Al-poor Cr-spinels. Shergol and Manipur ophiolite indicate their ocean floor affinity and the Suru valley peridotites depict supra subduction zone characteristics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The first author is grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi (India) for providing financial support under CSIR-fellowship sanction no. 09/251(0057)/2014-EMR-I. The authors like to thank Prof. N. V. Chalapathi Rao, Banaras Hindu University Varanasi, India for EPMA analysis. Prof. Shakil Ahmad Romshoo, Head, Department of Earth Sciences, University of Kashmir, is thankfully acknowledged for giving permission to publish this work. All the reviewers are acknowledged for their constructive comments.


  1. Ahmad, T., Islam, R., Khanna, P.P. and Thakur, V.C. (1996) Geochemistry, petrogenesis and tectonic significance of the basic volcanic units of the Zildat ophiolitic melange, Indus suture zone, eastern Ladakh (India). Geodinamica Acta, v.9, pp.222–233.CrossRefGoogle Scholar
  2. Ahmad, T., Tanaka, T., Sachan, H.K., Asahara, Y., Islam, R. and Khanna, P.P. (2008) Geochemical and isotopic constraints on the age and origin of the Nidar Ophiolitic Complex, Ladakh, India: Implications for the Neo-Tethyan subduction along the Indus suture zone. Tectonophysics, v.451, pp.206–224.CrossRefGoogle Scholar
  3. Aldanmaz, E., Schmidt, M.W., Gougaud, A. and Meisel, T. (2009) Mid-ocean ridge and supra-subduction geochemical signatures in spinel-peridotites from the Neo-Tethyan ophiolites in SW Turkey: implications for upper mantle melting processes. Lithos, v.113, pp.691–708.CrossRefGoogle Scholar
  4. Allen, J.F., Sack, R.O. and Batiza, R. (1988) Cr-spinels as petrogenetic indicators: MORB-type lavas from the Lamount seamount chain, eastern Pacific. Amer. Mineral., v.73, pp.741–753.Google Scholar
  5. Arai, S. (1992) Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineral. Magz., v.56, pp.173–784.CrossRefGoogle Scholar
  6. Arai, S. (1994) Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chemical Geol., v.113, pp.191–204.CrossRefGoogle Scholar
  7. Arai, S., Kadoshima, K. and Morishita, T. (2006) Widespread arc-related melting in the mantle section of the northern Oman ophiolite as inferred from detrital chromian magnesiochromites. Jour. Geol. Soc. London, v.163, pp.869–879.CrossRefGoogle Scholar
  8. Aswad, K.J., Aziz, N.R. and Koyi, H.A. (2011) Cr-spinel compositions in serpentinites and their implications for the petrotectonic history of the Zagros Suture Zone, Kurdistan Region, Iraq. Geol. Magz., v.148, pp.802–818.CrossRefGoogle Scholar
  9. Barnes, S.J. (2000) Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism. Jour. Petrol., v.41, pp.387–409.CrossRefGoogle Scholar
  10. Bedard, E., Hebert, R., Guilmette, C., Lesage, G., Wang, C.S. and Dostal, J. (2009) Petrology and geochemistry of the Saga and Sangsang ophiolitic massifs, Yarlung Zangbo Suture Zone, Southern Tibet: evidence for an arc-back-arc origin. Lithos, v.113, pp.48–67.CrossRefGoogle Scholar
  11. Bhat, I.M., Ahmad, T. and Subba Rao, D.V. (2017a) Geochemical characterization of serpentinized peridotites from the Shergol ophiolitic slice along the Indus Suture Zone (ISZ), Ladakh Himalaya, India. Jour. Geol., v.125, pp.501–513.CrossRefGoogle Scholar
  12. Bhat, I.M., Ahmad, T. and Subba Rao, D.V. (2017b) Compositional variability of spinel-group minerals from the Shergol serpentinized peridotites along Indus suture zone, Ladakh Himalaya (India): constraints on tectonomagmatic history. Chemie der Erde Geochemistry v.77, pp.587–595.CrossRefGoogle Scholar
  13. Bhat, I.M., Ahmad, T. and Subba Rao, D.V. (2018) Complex protolith origin of serpentinized peridotites from the Shergol ophiolitic slice north-western Ladakh Himalaya, Jammu and Kashmir, India. Jour. Appld. Geochem., v.20, pp.213–219.Google Scholar
  14. Bonatti, E. and Michael, P.J. (1989) Mantle peridotites from continental rifts to oceanic basins to subduction zones. Earth Planet. Sci. Lett., v.91, pp.297–311.CrossRefGoogle Scholar
  15. Buckman, S., Aitchison, J.C., Nutmana, A.P., Bennett, V.C., Saktura, W.M., Walsh, M.J., Kachovich, S. and Hidaka, H. (2018) The Spongtang Massif in Ladakh, NW Himalaya: An Early Cretaceous record of spontaneous, intra-oceanic subduction initiation in the Neotethys. Gondwana Res., v.63, pp.226–249.CrossRefGoogle Scholar
  16. Choi, S.H., Shervais, J.W. and Mukasa, S.B. (2008) Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Contrib. Mineral. Petrol., v.156, pp.551–576.CrossRefGoogle Scholar
  17. Dick, H.J.B., Bullen, T., 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol., v.86, pp.54–76.CrossRefGoogle Scholar
  18. Dietrich, V.J., Frank, W., Honegger, K. (1983) A Jurassic Cretaceous island arc in the Ladakh Himalayas. Jour. Volcanol. Geothermal Res., v.18, pp.405–433.CrossRefGoogle Scholar
  19. Dupuis, C., Hebert, R., Dubois-Cote, V., Guilmette, C., Wang, C.S., Li, Y.L. and Li, Z.J. (2005) The Yarlung Zangbo Suture Zone ophiolitic me’lange (southern Tibet): New insights from geochemistry of ultramafic rocks. Jour. Asian Earth Sci., v.25, pp.937–960.CrossRefGoogle Scholar
  20. Farahat, E.S. (2008) Chrome-spinels in serpentinites and talc carbonates of the El Ideid-El Sodmein District, central Eastern Desert, Egypt: their metamorphism and petrogenetic implications. Chemie der Erde Geochemistry, v.68, pp.193–205.CrossRefGoogle Scholar
  21. Frank, W., Gansser, A. and Trommsdorff, V. (1977) Geological observations in the Ladakh area (Himalayas)-a preliminary report: Schweizerische Mineralogische Petrographische Mitteilungen, v.57, pp.89–113.Google Scholar
  22. Gansser, A. (1980) The significance of the Himalaya suture zone: Tectonophysics, v.62, pp.37–40.Google Scholar
  23. Guillot, S., Hattori, K., Sigoyer de, J., Nägler, T. and Auzende, A.L., (2001) Evidence of hydration of the mantle wedge and its role in the exhumation of eclogites. Earth Planet. Sci. Lett., v.193, pp.115–127.CrossRefGoogle Scholar
  24. Hébert, R., Huot, F., Wang, S.C., Liu, Z.F. (2003) Yalung Zangbo ophiolites (Southern Tibet) revisited: geodynamic implications from the mineral record. In: Dilek, Y., Robinson, P.T. (Eds.), Ophiolites in Earth History. Geol. Soc. London Spec. Publ., v.218, pp.165–190.Google Scholar
  25. Hellebrand, E., Snow, J.E., Dick, H.J. and Hofmann, A.W. (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature, v.410, pp.677–681.CrossRefGoogle Scholar
  26. Hellebrand, E., Snow, J.E., Hoppe, P. and Hofmann, A.W. (2002) Garnet field melting and late stage refertilization in residual abyssal peridotites from the Central Indian ridge. Jour. Petrol., v.43, pp.2305–2338.CrossRefGoogle Scholar
  27. Honegger, K., Dietrich, V., Frank, W., Gansser, A., Thoni, M. and Trommsdorf, V. 1982. Magmatic and metamorphism in the Ladakh Himalayas (the Indus-Tsangpo suture zone): Earth Planet. Sci. Lett., v.60, pp. 253–292.Google Scholar
  28. Irvine, T.N. (1965) Chrome spinel as a petrogenetic indicator: Part I-theory. Canadian Jour. Earth Sci., v.2, pp.648–674.CrossRefGoogle Scholar
  29. Irvine, T.N. (1967) Cr-spinel as a petrogenetic indicator, Part 2 — Petrological applications. Canadian Jour. Earth Sci., v.4, pp.71–103.CrossRefGoogle Scholar
  30. Ishii, T., Robinson, P. T., Mackawa, H. and Fiske, R. (1992) Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogazawara-Mariana fore-arc, LEG 125. Proceedings of Ocean Drilling Program, Scientific Results, no.125, pp.445–485.Google Scholar
  31. Kamenetsky, V.S., Crawford, A.J., Meffre, S. (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Jour. Petrol., v.42, pp.655–671.CrossRefGoogle Scholar
  32. Liu, C.Z., Wu, F.Y., Wilde, S.A., Yu, L.J. and Li, J.L. (2010) Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism. Lithos, v.114, pp.413–422.CrossRefGoogle Scholar
  33. Mahéo G., Bertrand H., Guillot S., Villa I.M., Keller F. and Capiez P. (2004) The south Ladakh ophiolites (NW Himalaya, India): an intra-oceanic tholeiitic origin with implication for the closure of the Neo-Tethys. Chemical Geol., v.203, pp.273–303.CrossRefGoogle Scholar
  34. Mahéo, G., Fayoux, X., Guillot, S., Garzanti, E., Capiez, P. and Mascle, G. (2006) Relicts of an intra-oceanic arc in the Sapi-Shergol mélange zone (Ladakh, NW Himalaya, India): implications for the closure of the Neo-Tethys Ocean. Jour. Asian Earth Sci., v.26, pp.695–707.CrossRefGoogle Scholar
  35. Malpas, J., Zhou, M.-F., Robinson, P.T., Reynolds, P.H. (2003) Geochemical and geochronological constraints on the origin and emplacement of the Yarlung Zangbo ophiolites, Southern Tibet. Geol. Soc. London Spec. Publ., v.218, pp.191–206.CrossRefGoogle Scholar
  36. Matsumoto, I., Arai, S., Yamauchi, H. (1997) High-Al podiform chromitites in dunite-harzburgite complexes of the Sangun zone, Central Chugoku district, Southwest Japan. Jour. Asian Earth Sci., v.15, pp.295–302.CrossRefGoogle Scholar
  37. Radhakrishna T., Divakara Rao V. and Murali A.V. (1987) Geochemistry and petrogenesis of the Dras ultramafic mafic plutonic rocks of the Indus Suture ophiolites in Western Himalaya. Earth Planet. Sci. Lett., v.82, pp.136–144.CrossRefGoogle Scholar
  38. Reuber, I. (1989) The Dras arc: two successive volcanic events on eroded oceanic crust. Tectonophysics, v.161, pp.93–106.CrossRefGoogle Scholar
  39. Robertson, A.H.F. (2000) Formation of mélanges in the Indus Suture Zone, Ladakh Himalaya by successive subduction-related, collisional and post-collisional processes during Late Mesozoic-Late Tertiary time. In: Khan, M.A., Treolar, P.J., Searle, M.P., Jan, Q. (Eds.), Tectonics of the Nanga Parbat Syntaxes and the Western Himalaya. Geol. Soc. London, Spec. Publ., v.170, pp.333–374.Google Scholar
  40. Sachan, H.K. (2001) Supra-subduction origin of the Nidar Ophiolitic sequence, Indus Suture Zone, Ladakh, India: evidence from mineral chemistry of upper mantle rocks. Offioliti, v.26, pp.23–32.Google Scholar
  41. Singh, A.K. (2009) High-Al chromian spinel in peridotites of Manipur Ophiolite Complex, Indo-Myanmar Orogenic Belt: implication for petrogenesis and geotectonic setting. Curr. Sci., v.96, pp.973–978.Google Scholar
  42. Sinha, A.K., Mishra, M. (1992) Emplacement of the ophiolitic melange along continental collision zone of Indus Suture Zone in Ladakh Himalaya. Jour. Himalayan Geol., v.3, pp.179–189.Google Scholar
  43. Sinha, A.K., Mishra, M., 1994. The existence of oceanic islands in the Neotethys: Evidence from Ladakh Himalaya, India. Curr. Sci., v.67, pp.721–727.Google Scholar
  44. Xiong, F., Yang, J., Ba, D.Z., Liu, Z., Xu, X.Z., Feng, G., Niu, X., and Xu, J. (2014) Different type of chromitite and genetic model from Luobusa ophiolite. Tibet. Acta Petrologica Sinica, v.30, pp.2137–2163.Google Scholar
  45. Zhou, M.F., Robinson, P.T., Malpas, J. and Li, Z. (1996) Podiform chromitites in the Luobusa ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle. Jour. Petrol., v.37, pp.3–21.CrossRefGoogle Scholar
  46. Zhou, M.F., Robinson, P.T., Malpas, J., Edwards, S.J. and Qi, L., (2005) REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, Southern Tibet. Jour. Petrol., v.46, pp.615–639.CrossRefGoogle Scholar

Copyright information


Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of KashmirSrinagarIndia
  2. 2.Vice Chancellors Office, Jamia Millia IslamiaNew DelhiIndia
  3. 3.Geochemistry DivisionCSIR-National Geophysical Research Institute (NGRI)HyderabadIndia

Personalised recommendations