Advertisement

Journal of the Geological Society of India

, Volume 93, Issue 4, pp 482–486 | Cite as

Scope of 3-D Printing in Mining and Geology: An Overview

  • R. M. BishwalEmail author
Research Article
  • 12 Downloads

Abstract

The uses of 3-D printed materials are increasing at a rapid pace and even able to expand its reach among many researchers in the field of mining and geoscience. This paper describes by extensive study the practicality and benefits of using 3-D printed materials in many divisions of mining and earth science such as geology, rock mechanics, mining machinery, etc. both in academic and industry point of view. It illustrates some instances on how the complex study of rock properties like anisotropy, discontinuities, and its orientations, etc. can be simplified with the help of 3-D printed structures. It also describes how its use in various rockmass classification system such as RMR, GSI, RMi, and Q-system can make the process easier.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akintomide Akinola, (2010) Rapid Prototyping Control Systems Design. Akintomide Akinola, 112p.Google Scholar
  2. Balanoff, A., and Rowe, T.B. (2002) Osteological description of an elephant bird embryo using computed tomography and rapid prototyping, with a discussion of growth rates in Aepyornis. Jour. Vertebrate Paleont., 22:34A.Google Scholar
  3. Barton N. (1982) Modelling rock joint behaviour from in situ block tests: Implications for nuclear waste repository design. Prepared for Battelle Memorial Institute, under Contract DE-AC06-76-RL01830-OWI for the U.S. Department of Energy.Google Scholar
  4. Belem T, Homand-Etienne F, Souley M. (2000) Quantitative parameters for rock joint surface roughness. Rock Mech. Rock Engg., v.33, pp.217–42.CrossRefGoogle Scholar
  5. Bell, L., Brown, A., Bull, G., Conly, K., Johnson, L., McAnear, A., Maddux, C., Marks, G., Thompson, A., Schmidt, D. and Schrum, L. (2010) Educational implications of the digital fabrication revolution. Tech Trends, v.54(5), pp.2–5.CrossRefGoogle Scholar
  6. Bodla K.K., Garimella S.V., Murthy J.Y. (2014) 3D reconstruction and design of porous media from thin sections. Internat. Jour. Heat Mass Transf., v.73, pp.250–264CrossRefGoogle Scholar
  7. Bourke, M., Viles, H., Nicoli, J., Lyew-Ayee, P., Ghent, R. and Holmund, J. (2008) Innovative applications of laser scanning and rapid prototype printing to rock breakdown experiments: Earth Surface Processes and Landforms, v.33, pp.1614–1621, doi:  https://doi.org/10.1002/esp.1631.Google Scholar
  8. Bristowe, A., Parrott, A., Hack, J., Pencharz, M., and Raath, M.A. (2004) A non-destructive investigation of the skull of the small theropod dinosaur, Coelophysis rhodesiensis, using CT scans and rapid prototyping: Palaeontologia Africana, v.40, pp.159–163.Google Scholar
  9. Calvert, P. (2001) Inkjet printing for materials and devices. Chemistry of materials, v.13(10), pp.3299–3305.CrossRefGoogle Scholar
  10. Campbell, T. A., Williams, C., Ivanova, O. and Garrett, B. (2011) Could 3D Printing Change the World? Technologies, Potential and Implications of Additive Manufacturing, Strategic Foresight. Atlantic Council (https://doi.org/www.acus.org).
  11. Charles H. (1986) Apparatus for production of three-dimensional objects by stereolithography. U.S. Patent 4,575,330.Google Scholar
  12. Destombes, M. (1978) Globes en relief du XVIIIe si’In ecle. Bemiethner, E., and Aurada, F. eds. Der globusfreund: Wissenschaftliche zeitschrift fur globographie und instrumentenkunde. Nr. 25–27. Wien, Germany: Festschrift zum 25j̈Bestand des Coronelli-Weltbundes der Globusahrigen freunde. pp.S.225–S.231.Google Scholar
  13. Einstein H. H. and Dowding C. H. (1980) Shearing resistance and deformability of rock joints, Physical properties of rocks and minerals. McGraw Hill; pp.177–220.Google Scholar
  14. Einstein H.H. and Hirschfeld R.C. (1973) Model studies on mechanics of jointed rock. Jour. Soil Mech. &Found. Div. Proc. ASCE, v.90, pp.229–248.Google Scholar
  15. Rengier, F., Mehndiratta, A., H. von Tengg-Kobligk et al. (2010) 3-D printing based on imaging data: review of medical applications, Internat. Jour. Computer Assisted Radiology and Surgery, v.5, pp.35–341.CrossRefGoogle Scholar
  16. Fardin, N. (2008) Influence of structural non-stationarity of surface roughness on morphological characterization and mechanical deformation of rock joints. Rock Mech. Rock Engg., v. 41, pp.267–97.CrossRefGoogle Scholar
  17. Fereshtenejad, S. and Song, J. J. (2016) Fundamental study on applicability of powder-based 3D printer for physical modeling in rock mechanics. Rock Mech. Rock Engg., v.49(6), pp.2065–2074.CrossRefGoogle Scholar
  18. Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C. B., … and Zavattieri, P. D. (2015) The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design, v.69, pp.65–89.CrossRefGoogle Scholar
  19. Goldstein M., Goosev B., Pyrogovsky N., Tulinov R. and Turovskaya A. (1966) Investigation of mechanical properties of cracked rock. Proc. Ins. Cong., Int. Soc. Rock. Mech. Lisbon, v.1, pp.521–524.Google Scholar
  20. Goodman, R.E. (1976) Methods of geological engineering. West Publishing Company, San Francisco, 472p.Google Scholar
  21. Hasiuk, F. (2014) Making things geological: 3-D printing in the geosciences. GSA Today, v.24(8), pp.28–29.CrossRefGoogle Scholar
  22. Hoek, E. (1961) The design of a centrifuge for simulation of gravitational force fields in mine models. Jour. S. African Inst. Mining and Metallurgy, v.65(9), pp.455–487.Google Scholar
  23. Horowitz, S. S. (2012). Printing space: 3D printing of digital terrain models for enhanced student comprehension and educational outreach. In: 2012 GSA Annual Meeting in Charlotte.Google Scholar
  24. Hyatt, J.A., and Rosiene, J. (2013) Preparing image maps, physical models, and analysing topographic form using terrestrial laser scanning data collected at Dinosaur State Park, CT. Geol. Soc. Amer. Abstracts with Programs, v.45(1), pp.111Google Scholar
  25. Gibson, I. and Shi, D. (1997). Material properties and fabrication parameters in selective laser sintering process. Rapid Prototyping Jour., v.3(4), pp.129–136. doi: https://doi.org/10.1108/13552549710191836 CrossRefGoogle Scholar
  26. IEEE (2014) Layer-by-Layer: The Evolution of 3-D Printing “https://doi.org/http://theinstitute.ieee.org/technology-focus/technology-history/layerbylayer-the-evolution-of-3d-printing (Date accessed: 20/02/2016)
  27. Ishikawa, T., and Kastens, K.A. (2005) Why Some Students Have Trouble with Maps and Other Spatial Representations. Jour. Geosci. Education, v.53, pp.184–197.CrossRefGoogle Scholar
  28. Ishutov, S., Hasiuk, F., Gray, J. and Harding, C. (2014) Integration of Petrophysical Methods and 3D Printing Technology to Replicate Reservoir Pore Systems. In: AGU Fall Meeting Abstracts.Google Scholar
  29. Ivanova, O., Williams, C., & Campbell, T. (2013). Additive manufacturing (AM) and nanotechnology: promises and challenges. Rapid Prototyping Jour., v.19(5), pp.353–364. doi: https://doi.org/10.1108/rpj-12-2011-0127 CrossRefGoogle Scholar
  30. Jiang, C., Zhao, G. F., Zhu, J., Zhao, Y. X. and Shen, L. (2016) Investigation of dynamic crack coalescence using a gypsum-like 3D printing material. Rock Mech. Rock Engg., v.49(10), pp.3983–3998.CrossRefGoogle Scholar
  31. Jiang, Q., Feng, X., Gong, Y., Song, L., Ran, S., & Cui, J. (2016) Reverse modelling of natural rock joints using 3D scanning and 3D printing. Computers and Geotechnics, v.73, pp.210–220.CrossRefGoogle Scholar
  32. Jiang, Q., Feng, X., Song, L., Gong, Y., Zheng, H. and Cui, J. (2015). Modeling rock specimens through 3D printing: Tentative experiments and prospects. Acta Mechanica Sinica, v.32(1), pp.101–111. doi: https://doi.org/10.1007/s10409-015-0524-4 CrossRefGoogle Scholar
  33. Jiang, C. and Zhao, G. F. (2015) A preliminary study of 3D printing on rock mechanics. Rock Mech. Rock Engg., v.48(3), pp.1041–1050.CrossRefGoogle Scholar
  34. Ju, Y., Xie, H., Zheng, Z., Lu, J., Mao, L., Gao, F. and Peng, R. (2014) Visualization of the complex structure and stress field inside rock by means of 3D printing technology. Chinese Science Bull., v.59(36), pp.5354–5365.CrossRefGoogle Scholar
  35. Kelso, R. (2013) Expanding the planetary analog test sites in hawaii-planetary basalt manipulation. In: AGU Fall Meeting Abstracts.Google Scholar
  36. Kong et al. (2017) Elastic Properties and Size effect of 3-D Printed Rocks. Available from: https://doi.org/https://www.researchgate.net/publication/317039521_Elastic_Properties_and_Size_effect_of_3-D_Printed_Rocks
  37. Lama, R.D. (1974) The uniaxial compressive strength of jointed rock, Prof. L. Müller Festschrift, Inst. Soil Mech. & Rock Mech., Univ. Karlsruhe, Karlsruhe, pp.67–77.Google Scholar
  38. Lindqvist, K., Khudobakhshova, S., Meng, S., Urazayeva, S., and Zakhidova, D. (2012) A 3D visualization of earthquake incidence correlated to geological main structures within parts of the Tien Shan and Pamir Mountains, Central Asia: International Geological Congress Abstracts, 34:3305.Google Scholar
  39. Mitasova, H., Hardin, E., Starek, M.J., Harmon, R.S., and Overton, M. (2011a) Landscape dynamics from LiDAR data time series, In: Geomorphometry, Hengl, T., Evans, I.S., Wilson, J.P., Gould, M. (eds.), Redlands, CA, p.3–6.Google Scholar
  40. Mitasova, H., Harmon, R.S, Weaver, K., Lyons, N. and Overton, M. (2011b) Scientific visualization of landscapes and landforms, Geomorphology, special issue on Geospatial Technologies and Geomorphological Mapping, doi:  https://doi.org/10.1016/j.geomorph.2010.09.033
  41. Osinga, S., Zambrano-Narvaez, G. and Chalaturnyk, R.J. (2015) Study of geomechanical properties of 3D printed sandstone analogue. In: 49th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association.Google Scholar
  42. Löwe, P. and Klump, J. (2013). 3D printouts of geological structures, land surfaces and human interaction-an emerging field for science communication. In: 8th International Symposium on Archaeological Mining History.Google Scholar
  43. Pouech, J., Mazin, J.M., and Tafforeau, P. (2010) High quality 3-D imaging of vertebrate micro-remains using X-ray synchrotron phase contrast micro-tomography: Comptes Rendus. Palévol, v.9, pp.389–395, doi:  https://doi.org/10.1016/j.crpv.2010.07.010.Google Scholar
  44. Ramakrishnan, R., Griebel, B., Volk, W., Günther, D. and Günther, J. (2014). 3D Printing of Inorganic Sand Moulds for Casting Applications. Advanced Materials Res., v.1018, pp.441–449. doi: https://doi.org/10.4028/www.scientific.net/amr.1018.441 CrossRefGoogle Scholar
  45. Ramamurthy, T. (2010) Engineering in Rocks for Slopes, Foundations and Tunnels, PHI Learning Pvt. Ltd.Google Scholar
  46. Reyes, R., Bellian, J.A., Dunlap, D.B., and Eustice, R.A. (2008) Cyber techniques used to produce physical geological models: Geol. Soc. America Abstracts with Programs, v.40(6), pp.136.Google Scholar
  47. Sachs, E. M., Haggerty, J. S., Cima, M. J., & Williams, P. A. (1993) Three-dimensional printing techniques, US Patent 5,204,055.Google Scholar
  48. Seitz, H., Rieder, W., Irsen, S., Leukers, B., & Tille, C. (2005) Three dimensional printing of porous ceramic scaffolds for bone tissue engineering. Jour. Biomedical Materials Res., Part B: Applied Biomaterials, v.74(2), pp.782–788.CrossRefGoogle Scholar
  49. Seth S. Horowitz and Peter H. Schultz, (2014) Printing Space: Using 3-D Printing of Digital Terrain Models in Geosciences Education and Research. Journal of Geoscience Education: February 2014, Vol. 62, No. 1, pp. 138–145. doi:  https://doi.org/10.5408/13-031.1 Google Scholar
  50. Stadler, A., Nagel, C., König, G. and Kolbe, T. H. (2009). Making Interoperability Persistent: A 3D Geo Database Based on CityGML. 3D Geo-Information Sciences, pp.175–192. doi: https://doi.org/10.1007/978-3-540-87395-2_11
  51. Stimpson, B. (1981) Laboratory techniques for demonstrating rock mass behaviour. International Journal of Rock Mechanics Science & Geomechanical Abstract. 1/8, pp.535–537.CrossRefGoogle Scholar
  52. Suzuki, A., Sawasdee, S., Makita, H., Hashida, T., Li, K., & Horne, R. N. (2016). Characterization of 3D printed fracture networks. Proc. 41st Work. Geotherm. Reserv. Eng.Google Scholar
  53. Tateosian, L.G., Mitasova, H., Foglemann, B., Harmon, B., Weaver K., and Harmon R.S. (2010) TanGeoMS: Tangible geospatial modelling system, IEEE Trans. Visualization and Computer Graphics (TVCG), v.16(6), pp.1605–1612.CrossRefGoogle Scholar
  54. Tyagi G. (2016) 3D Printing Technology. https://doi.org/http://nicsu.up.nic.in/knowdesk/3D-Printing-Technology.pdf (Date Accessed: 20/02/2016)
  55. Tymrak, B.M., Kreiger, M. and Pearce, J.M. (2014) Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials & Design, v.58, pp.242–246.CrossRefGoogle Scholar
  56. Vogler, D., Walsh, S.D.C., Dombrovski, E., and Perras, M.A. (2017). A comparison of tensile failure in 3D-printed and natural sandstone. Engg. Geol., v.226, pp.221–235. doi: https://doi.org/10.1016/j.enggeo.2017.06.011.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2019

Authors and Affiliations

  1. 1.Department of Mining EngineeringIndian School of MinesDhanbadIndia

Personalised recommendations