Advertisement

Journal of the Geological Society of India

, Volume 93, Issue 4, pp 431–436 | Cite as

Characteristics of the Palynomorphs and Hydrocarbon Potential in the Continental Permian Raniganj Formation, Banespetali Nala, West Bengal

  • H. N. SinhaEmail author
  • R. C. Patel
  • B. A. Kumar
Research Article
  • 8 Downloads

Abstract

The youngest coal seam of the Raniganj Formation of upper Permian age has been critically examined for microfloral assemblages near to the continental P/T boundary of India. The study reveals a rich and diversified microfloral assemblages and it tentatively corresponds with long distances homotaxial beds of SE Turkey, Australia and Antarctica. Based on the microfloral assemblages, the dark shale occurring at the youngest coal seam of the Raniganj Formation tentatively assigns a Wordian to Capitanian (260–265Ma) age. Some of the forms such as Striatoabieites multistriatus, Protohaploxipinus sp., Striatopodocarpites fusus, Striatopodocorpites cancellatus, Praecolpatites sinuosus, Plicatipollenites gondwanensis have a wide range of distributions from low to high palaeo-latitudinal Gondwanan provinces. This attributes that these forms probably were not climate dependent, but other might vaguely be ascribed to be climatic sensitive. Apatite Fission Track (AFT) and maturation study based on spore/pollen coloration attributes to the possibility of small amount of liquid hydrocarbon and large commercial gas accumulations in the Raniganj Formation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-mashramah, Y. A. A. (2011) Maturity of kerogen, petroleum generation and the application of fossils and organic matter for measurements. Master thesis in Geology at Lund University no. 274, pp.1–28.Google Scholar
  2. Backhouse, J. (1991) Permian palynostratigraphy of the Collie Basin, western Australia. Review of Palaeobotany and palynology, v. 67, pp. 237–314.CrossRefGoogle Scholar
  3. Balme, B. E. (1970) Palynology of Permian and Triassic strata in the Salt Range and Surghar range, West Pakistan. In: Kummel, B., Teichert, C. (eds). Stratigraphic Boundary Problems: Permian and Triassic of west Pakistan,. University Press of Kanas (Department of Geology, special publication 4) Kansas: pp. 306–453.Google Scholar
  4. Balme, B. E. and Hennelly, J. P. F. (1955) Bisaccatesporomorphs from Australian Permian coals. Australian Jour. Bot., v. 3, pp. 89–98.CrossRefGoogle Scholar
  5. Bardhan, B. and Ghosh, A. (1999) Palaeotemperature-palaeodepth study from selected coal basins ofDamodar valley coalfields. India. Jour. Geol. Soc. India, v. 53, pp. 509–536.Google Scholar
  6. Biswas, S. K. (1999) A review on the evolution of rift basins in India during Gondawana with special reference to western Indian basins and their hydrocarbon prospects. PINSA 1999, v. 65A (3), pp. 261–283.Google Scholar
  7. Brosse, E. and Hue, A. K. (1986) Organic parameters as indicators of thermal evolution in the Viking Graben. In: Burrus, J. (Ed.) Thermal modeling in sedimentary Basins. Technip. Paris, pp. 517–530.Google Scholar
  8. Casshyap, S. M. and Tewari, R. C. (1999) Depositional model and tectonic evolution of Gondwana Basins. In: Venkatachala, B. S. and Maheswari, H. K. (Eds.). Indian Gondwana Mem. Geol. Soc. India. v. 21, pp. 95–206.Google Scholar
  9. Chakraborty, C. Mandal, N. and Ghosh, S. K. (2003) Kinematics of Gondawana basins of peninsular India. Tectonophysics, v. 377, pp. 299–324.CrossRefGoogle Scholar
  10. Chatterjee, R. and Pal, P. K. (2010) Estimation of stress magnitude and physical properties for coal seam of Rangamati area, Raniganj coalfield, India. Jour. Coal Geol. v. 81(1), pp. 25–36.CrossRefGoogle Scholar
  11. Colllins, A. (1990) The 1–10 spore colour index (SCI) scale: a universally applicable colour maturation scale based on graded, picked palynomorphs. Meded. Rijks Geol. Dienst, v. 45, pp. 39–47.Google Scholar
  12. Cooper, B. S. (1977) Estimation of the maximum temperatures attained in sedimentary rocks. In: Hobson, G.D. (Ed.) Developments in Petroleum Geology-1. Applied Science Publishers, London, pp.127–146.Google Scholar
  13. Fisher, M. J., Barnard, P. C. and Cooper, B. S. (1980) Organic maturation and hydrocarbon generation in the Mesozoic sediments of the Sverdrup Basin Arctic Canada. Proceed. 4th Int. Palynol. Conf., v. 2, pp. 581–588.Google Scholar
  14. Foster, C. B. (1975) Permian plant microfossils from the Blair Athol Coal Mearsures. Central Queensland, Australia. Palaeontographica Abt. B., v. 154, pp. 121–171.Google Scholar
  15. Foster, C. B. (1982) Spore-pollen assemblages of the Bowen Basin. Queensland (Australia): their relationship to the Permian/Triassic boundary. Rev. Palaeob. Palynol., v. 36, pp. 165–183.Google Scholar
  16. Ghosh, S. C., Nandi, A. and Ahmed G. (1994) Study of Permo-Triassic boundary in Goundwana sequence of Raniganj Basin, India. Ninth Int. Gond. Symp., Hydrabad, v.1, pp. 179–192.Google Scholar
  17. Hartkopf-Fröder, C., Königshof, P., Littke, R. and Schwarzbauer, J. (2015) Optical thermal maturity parameters and organic geochemical alteration at low grade diagensis to anchimetamorphism. A review. Int. Jour. Coal Geol., v. 150–151, pp.74–119.CrossRefGoogle Scholar
  18. Hota, R. N., Das, B. K., Sahoo, M. and Maejima, W. (2011) Provenance Variability during Damuda Sedimentation in the TalchirGondwana Basin, India — A Statistical Assessment. Int. Jour. Geosci., v. 2, pp. 120–137.CrossRefGoogle Scholar
  19. Hunt, J. M. (1996) Petroleum Geochemistry and Geology 2nd ed. W.H. Freeman & Company, New York, 622 p.Google Scholar
  20. Krishnan, M. S. (1982) Geology of India and Burma. CBS Publication, India. pp. 536.Google Scholar
  21. Lindström, S. and Mcloughlin. S. (2007) Synchronous palynofloristic extinction and recovery after the end-Permian event in the Prince Charles Mountains, Antarctica: implications for palynofloristic turnover across Gondwana. Rev. Palaeob. Palynol., v. 145, pp. 89–122.CrossRefGoogle Scholar
  22. Lindström, S. (1995) Early Late Permian palynostratigraphy and palaeobiogeography of Vestfjella, Dronning Moud Land Antarctica. Rev. Palaeob. Palynol., v. 86, pp.157–173.CrossRefGoogle Scholar
  23. LNG World News (2011) India: ONGC finds Shale Gas near Durgapur, February 4. https://doi.org/http://www.ingworldnews.com/india-ongc-finds-shale-gas-neardugapur/.
  24. Mahadevan, T. M. (2002) Geology of Bihar and Jharkhand. Geol. Soc. India, 563p.Google Scholar
  25. Marshall, J. E. A. (1990) Determination of thermal maturity. In: Briggs, D. E. G. and Crowther, P. (Eds): Palaeobiology-a synthesis, Blackwell Scientific Publications. Oxford, U. K., pp. 511–515.Google Scholar
  26. Marshall, J. E. A. and Yule, B. L. (1999) Spore color measurement. In: Jones, T. P. and Rowe, N. P. (Eds.) Fossil plants and spores: modern techniques. Geol. Soc. London, pp.165–168.Google Scholar
  27. Mendhe, V. A., Mishra, S., Verma, A. K., Kamble, A. D., Banerjee, M. and Sutay, T. (2017) Gas reservoir characteristics of the lower Gondwanashales in Raniganj Basin of Eastern India. Jour. Petro. Sc. Eng., v. 149, pp. 649–664.CrossRefGoogle Scholar
  28. Mishra, S., Mendhe, V. A., Kamble, A. D., Bannerjee, M., Varma, A. K., Singh, B. D. and Pandey, J. K. (2016) Prospects of shale gas exploitation in Lower Gondwana of Raniganj coalfield (West Bengal), India. The Palaeob., v.65, pp. 31–46.Google Scholar
  29. Mukhopathyay, G., Mukhopadhyay, S. K., Roy Choudhary, M. and Parui, P. K. (2010) Stratigraphic correlation between defferent Gondwana Basins of India. Jour. Geol. Soc. India, v. 76, pp. 251–266.CrossRefGoogle Scholar
  30. Patel, R. C., Sinha, H. N., Kumar, B. A. and Singh, P. (2014) Basin provenance and post-depositional thermal history along the continental P/T boundary of the Raniganj Basin, Eastern India: constraints from apatite fission track dating. Jour. Geol. Soc. India, v. 83, pp. 403–413.CrossRefGoogle Scholar
  31. Peters, K.E. (1986) Guidelines for evaluating pertroleum source rocks using programmed pyrolysis. American Assoc. Petr. Geol. v. 70, pp.318–329.Google Scholar
  32. Pierart, P. (1978) Evolution delasporopollenine au cours du la diagenese. Ann. Mim. Belg., v. 6, pp. 127–130.Google Scholar
  33. Rawat, J. S. (2015) Predictive new geological model for future hydrocarbon exploration in Indian sedimentary basins. Jour. Geol. Soc. India, v. 85, pp. 727–744.CrossRefGoogle Scholar
  34. Sarkar, A, Yoshioka, H., Ebihara, M. and Naraoka, H. (2003) Geochemical and organic carbon isotope studies across the continental Permo-Triassic boundary of Raniganj Basin, Eastern India. Palaeog. Paloeoclim. Palaeocol, v. 191, pp. 1–14.CrossRefGoogle Scholar
  35. Singh, R. P. and Yadav, R. N. (1995) Prediction of subsidence due to coal mining in Raniganj coalfield, west Bengal, India. Eng. Geol. v.39, pp.103–111.CrossRefGoogle Scholar
  36. Sinha, H. N., Preety, K., Rai, P., Mohanti, D. and Sarangi, S. (2017) The petroleum potential of the Arangi and Kajrahat Limestone formations from the Semri Group, Chopan, Uttar Pradesh. India. GeoResJ v.13, pp. 59–65.CrossRefGoogle Scholar
  37. Smith, P.M.R. (1983) Spectral correlation of spore coloration standards. In: Brooks, J.(Ed.). Petroleum Geochemistry and Exploration of Europe. Geological Society, London, pp.289–294.Google Scholar
  38. Staplin, F. L. (1969) Sedimentary organic matter, organic metamorphism and oil and gas occurrence. Bull. Can. Petrol. Geol. v. 17, pp. 47–66.Google Scholar
  39. Stephenson, M. H. and Filatoff, J. (2000) Description and correlation of Late Permian palynological assemblages from the Khuft Formation Saudi Arabia and evidence for the duration of the pre-Khuft hiatus. In: Al-Hajri, S., Owens, B. (Eds.) Stratigraphic Palynology of the Palaeozoic of Saudi Arabia. Geo Arabia special Publication 1, Gulf Petro Link. Bahrain: pp. 192–215.Google Scholar
  40. Stolle, E. (2010) Recognition of southern Gondwana palynomorphs at Gondwana’s northern margin-and biostratigraphy correlation of Permian strata from SE Turkey and Australia. Geol. Jour., v. 45, pp. 336–349.Google Scholar
  41. Tissot, B. P. and Welte, D. H. (1978) Petroleum formation and occurrence. Springer-Verlag, Berlin Heidelberg. New York. 538p.Google Scholar
  42. Veevers, J. J. and Tewari, R. C. (1995) Gondwana master basin of peninsular India between Tethys and the interior of the Gondwanaland province of Pangea. Mem. Geol. Soc. Am., v. 187, pp. 1–73.Google Scholar
  43. Wood, G. D., Gabrial, A. M. and Lawson, J. C. (1996) Palynological techniques-processing and microscopy. In: Palynology: Principles and applications, Jansonius, J. and Mcgregor, D. C. (Eds.), American Asso. Strati. Palynol. Found. Dallas: pp. 29–50.Google Scholar

Copyright information

© Geological Society of India 2019

Authors and Affiliations

  1. 1.Department of GeologyVinoba Bhave UniversityHazaribagIndia
  2. 2.Department of GeophysicsKurukshetra UniversityKurukshetraIndia

Personalised recommendations