Advertisement

Journal of the Geological Society of India

, Volume 93, Issue 4, pp 419–430 | Cite as

Gravity and Magnetic Survey in Southwestern Part of Cuddapah Basin, India and its Implication for Shallow Crustal Architecture and Mineralization

  • Shuva Shankha GanguliEmail author
  • Satyaveer Singh
  • Niharika Das
  • Deepak Maurya
  • Sanjit Kumar Pal
  • J. V. Rama Rao
Research Article
  • 4 Downloads

Abstract

Gravity and magnetic surveys were carried out in southwestern part of Cuddapah basin (CB) covering an area of ~3660 km2. Southwestern part of CB gained lot of attention after discovery of second most important uranium province in India. Some non-metallic industrial minerals and base metal occurrence are also reported in the study area. Present study with high spatial resolution gravity-magnetic survey aims to decipher detail basin geometry, nature of sediments, along with possible mineral deposits in SW part of CB. The gravity survey comprising short and long wavelength anomalies brought out sedimentary characteristics and basement architecture underneath the sediments. The long wavelength features of the gravity map shows gneissic basement, which is characterized by both basic and acid magmatic intrusive. Residual gravity anomaly map shows good correspondence with the exposed high density basaltic rock units and also brought out occurrence of concealed high density litho-units, which have significance for mineral prospecting. The magnetic map shows that both sediments and underneath basement are non-magnetic in nature except SW part of the study area, where study suggests occurrence of concealed mafic lensoid body. Euler solutions and combined gravity-magnetic modelling further facilitated for understanding of structural feature and basement geometry. Based on the integrated gravity and magnetic study mineral prospecting zones have been delineated for further detailed study.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anand, M., Gibson, S.A., Subbarao, K.V., Keelly, S.P. and Dickin, A.P. (2003) Early Proterozoic Melt Generation Process Beneath The Intra-Cratonic Cuddapah Basin, Southern India. Jour. Petro., v. 44(12), pp.2139–2171.CrossRefGoogle Scholar
  2. Barton, P.J. (1986) The relationship between seismic velocity and density in the continental crust—a useful constraint? Geophys. Jour. Internat., v.87(1), pp.195–208.Google Scholar
  3. Båth, B.M. (2012) Spectral analysis in geophysics. Elsevier.Google Scholar
  4. Biswas, A., Mandal, A., Sharma, S.P. and Mohanty, W.K. (2014) Delineation of subsurface structures using self-potential, gravity, and resistivity surveys from South Purulia Shear Zone, India: Implication to uranium mineralization. Interpretation, v.2(2), T103–T110.Google Scholar
  5. Blakely, R.J. (1996) Potential theory in Gravity and Magnetic applications. Cambridge University Press, 464p.Google Scholar
  6. Bryan, S. E. and Ernst, R. (2008) Revised definition of large igneous provinces (LIPs). Earth Sci. Rev., v.86(1), pp.175–202.CrossRefGoogle Scholar
  7. Chakraborti, S. and Saha, D. (2009) Tectonic stresses and thin-skinned tectonics in a Proterozoic fold-and-thrust belt read from calcite mylonites in the Cuddapah basin, south India. Indian Jour. Geol., v.78, pp.37–54.Google Scholar
  8. Chandrakala, K., Mall, D.M., Sarkar, D. and Pandey, O.P. (2013) Seismic imaging of the Proterozoic Cuddapah basin, South India and regional geodynamics. Precambrian Res., v.213, pp.277–289.CrossRefGoogle Scholar
  9. Chetty, T. R. (2011) Tectonics of Proterozoic Cuddapah basin, southern India: A conceptual model. Jour. Geol. Soc. India, v.78, pp.446–456.CrossRefGoogle Scholar
  10. Deb, M. and Pal, T. (2015) Mineral potential of Proterozoic intracratonic basins in India. Geol. Soc. London, Mem., v. 43(1), pp.309–325.CrossRefGoogle Scholar
  11. Dobmeier, C., Lutke, S., Hammerschmidt, H. and Mezger, K. (2006) Emplacement and deformation of the Vinukonda granite — implications for the geological evolution of peninsular India and for Rodinia reconstructions. Precambrian Res., v. 146, pp.165–178.CrossRefGoogle Scholar
  12. Dobrin, M.B. and Savit, C.H. (1988) Introduction to geophysical prospecting. McGraw-Hill Book Company, ISBN 0-07-100404-1.Google Scholar
  13. Geological Survey of India (2012) 1:50000 unpublished geological map of Toposheet No 57J/11.Google Scholar
  14. GSI-NGRI. (2006) Gravity Anomaly Map of India on 1:2 Million Scale. Geological Survey of India, Hyderabad and National Geophysical Research Institute, Hyderabad, India, Maps, 1–3p.Google Scholar
  15. Gupta, J.N., Pandey, B.K., Chabria, T., Banerjee, D.C. and Jayaram, K.M. (1984) Rb–Sr Geochronologic studies on the granites of Vinukonda and Kanigiri, Prakasam district, Andhra Pradesh, India. Precambrian Res., v.26, pp.105–109.CrossRefGoogle Scholar
  16. Gupta, V.K. and Ramani, N. (1980) Some aspects of regional residual separation of gravity anomalies in a Precambrian terrain. Geophysics, v.45, pp.1412–1426.CrossRefGoogle Scholar
  17. Jacobsen, B.O. (1987) A case for upward continuation as a standard separation filter for potential-field maps. Geophysics, v.52, pp.1138–1148.CrossRefGoogle Scholar
  18. Kaila, K.L. and Bhatia, S.C. (1981) Gravity study along Kavali-Udipi deep seismic sounding profile in the Indian peninsular shield: some inferences about origin of anorthosites and Eastern Ghat orogeny. Tectonophysics, v. 79(1–2), pp.129–143.CrossRefGoogle Scholar
  19. Kaila, K.L. and Tewari, H.C. (1985) Structural trends in the Cuddapah basin from deep seismic soundings (DSS) and their tectonic implications. Tectonophysics, v.115(1–2), pp.69–86.CrossRefGoogle Scholar
  20. Kaila, K.L., Roy Chowdhury, K., Reddy, P.R., Krishna, V.G., Narain, H., Subbotin, S.I., et al. (1979) Crustal structure along Kavali-Udipi profile in the Indian peninsular shield from deep seismic sounding. Jour. Geol. Soc. India, v.20(7), pp.307–333.Google Scholar
  21. Kailasam, L.N. (1976) Geophysical studies of the major sedimentary basins of the Indian craton, their deep structural features and evolution. Tectonophysics, pp.225–245.Google Scholar
  22. Kesavamani, M., Rao, N.B. and Rama Rao, J.V. (1997) Characteristics of granite greenstone basement below the Cuddapahs: A geophysical insight. Jour. Geophys Union, v.VI, pp.27–29.Google Scholar
  23. King, W. (1872) Kudapah and Karnul Formations in the Madras Presidency. Geol. Surv. India Mem., v.8(1), 346p.Google Scholar
  24. Krishna Brahmam, N. (1989). Gravity and seismicity of the Cuddapah and basin and surrounding places. Jour. Geol. Soc. India, v.34(4), pp.373–384.Google Scholar
  25. Krishna Brahmam, N. and Dutt, N.V. (1992) A meteoritic impact theory for the initiation of the Cuddapah (Proterozoic) basin of India. Bull. Indian Geol. Assoc., v.25, pp.43–60.Google Scholar
  26. Krishna Brahmam, N., Sarma, J.R., Aravamadhu, P.S. and Subbarao, D.V. (1986) Explanatory brochure on Bouguer gravity anomaly map (NGRI/GPH-6) of Cuddapah basin (India) with scale 1: 250,000, NGRI, Hyderabad. 36.Google Scholar
  27. Kumar, U., Pal, S.K., Sahoo, S.D., Satya Narayan, Saurav, Mondal S. and Gunguli, S.S. (2018) Lineament mapping over Sir Creek offshore and its surroundings using high resolution EGM2008 Gravity data: An integrated derivative approach. Jour. Geol. Soc. India, v.91(6), pp.645–764.Google Scholar
  28. Li, Xiong and Götze Hans-Jürgen (2001) Ellipsoid, geoid, gravity, geodesy, and geophysics. Geophysics, v.66(6), pp.1660–1668CrossRefGoogle Scholar
  29. Lyngsie, S.B., Thybo, H. and Rasmussen, T.M. (2006) Regional geological and tectonic structures of the North Sea area from potential field modeling. Tectonophysics, v.413(3), pp.147–170.CrossRefGoogle Scholar
  30. Mandal, A., Gupta, S., Mohanty, W. K. and Misra, S. (2015) Sub-surface structure of a craton-mobile belt interface: Evidence from geological and gravity studies across the Rengali Province-Eastern Ghats Belt boundary, eastern India. Tectonophysics, v.662, pp.140–152.CrossRefGoogle Scholar
  31. Manikyamba, C., Kerrich, R., Gonzalez-Alvarez, I., Mathur, R. and Khanna, T.C. (2008) Geochemistry of Paleoproterozoic black shales from the Intracontinental Cuddapah basin, India: implications for provenance, tectonic setting, and weathering intensity. Precambrian Res., v.162(3), pp.424–440.CrossRefGoogle Scholar
  32. Meijerink, A. M., Rao, D. P. and Rupke, J. (1984) Stratigraphic and structural development of the Precambrian Cuddapah basin, SE India. Precambrian Res., v.26(1), pp.5799101–97104.CrossRefGoogle Scholar
  33. Mishra, D. C. (2011) Gravity and Magnetic Methods for Geological Studies. Hyderabad: BS Publications, 938 p.Google Scholar
  34. Mishra, D. C. and Kumar, M. R. (2014) Proterozoic orogenic belts and rifting of Indian cratons: geophysical constraints. Geoscience Frontiers, v.5(1), pp.25–41.CrossRefGoogle Scholar
  35. Murthy, Y. G. (1981) The Cuddapah basin: A review of Basin development and basement framework relations. In Fourth Workshop on ‘Status, Problems, and Programmes in Cuddapah Basin’, Institute of India Peninsular Geology, Hyderabad, pp.51–72.Google Scholar
  36. Naganjaneyulu, K. and Harinarayana, T. (2004) Deep Crustal Electrical Signatures of Eastern Dharwar Craton, India. Gondwana Res., v.7(4), pp.951–960.CrossRefGoogle Scholar
  37. Nagaraja Rao, B.K., Rajurkar, S.T., Ramalingaswamy, G. and Ravindra Babu, B. (1987) Stratigraphy, structure and evolution of the Cuddapah basin. Mem. Geol. Soc. India, v.6, pp.33–86.Google Scholar
  38. Nasr, I.H., Amiri, A., Inoubli, M.H., Salem, A.B., Chaqui, A. and Tlig, S. (2011) Structural setting of northern Tunisia insights from gravity data analysis Jendouba case study. Pure Appld. Geophys., v.168(10), pp.1835–1849.CrossRefGoogle Scholar
  39. Oruç, B. and Keskinsezer, A. (2008). Structural setting of the northeastern Biga Peninsula (Turkey) from tilt derivatives of gravity gradient tensors and magnitude of horizontal gravity components. Pure Appld. Geophys., v.165(9), pp.1913–1927.CrossRefGoogle Scholar
  40. Pal, S. K. and Majumdar, T. J. (2015) Geological appraisal over the Singhbhum-Orissa Craton, India using GOCE, EIGEN6-C2 and in-situ gravity data. Internat. Jour. Appld. Earth Observations and Geoinformation, v.35, pp.96–119.CrossRefGoogle Scholar
  41. Pal, S.K., Satya Narayan, Majumdar, T.J., and Kumar, U. (2016a) Structural mapping over the 850E ridge and surroundings using EIGEN6C4 High Resolution Global Combined Gravity Field Model: an integrated approach. Marine Geophys. Res., v.37, pp.159–184.CrossRefGoogle Scholar
  42. Pal, S.K., Majumdar, T.J., Pathak, V.K., Satya Narayan, Kumar, U. and Goswami O.P. (2016b) Utilization of high resolution EGM2008 gravity data for geological exploration over the Singhbhum-Orissa Craton, India. Geocarto Internat., v.31(7), pp.783–802.CrossRefGoogle Scholar
  43. Pal, S.K., Vaish, J., Kumar, S., and Bharti, A. K. (2016c) Coalfire mapping of East Basuria Colliery, Jharia coal field using Vertical Derivative Technique of Magnetic data. Jour. Earth System Sci., v.125(1), pp.165–178.CrossRefGoogle Scholar
  44. Pal, S. K., Vaish, J., Kumar, S., Priyam, P., Bharti, A. K. and Kumar R. (2017) Downward continuation and Tilt Derivative of magnetic data for delineation of concealed coal fire in East Basuria Colliery, Jharia coal field, India. Jour. Earth System Sci., v.126(53), pp.1–17.Google Scholar
  45. Proakis, J.G. (2001) Digital signal processing: principles algorithms and applications. Pearson Education India.Google Scholar
  46. Qureshy, M.N., Krishna Brahmam, N., Aravamadhu, P.S. and Naqvi, S.M. (1968) Role of Granitic intrusions in reducing the density of the crust, and other related problems as illustrated from a gravity study of the Cuddapah basin India. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, v.304(1479), pp.449–464.Google Scholar
  47. Ram Babu, H.V. (1993) Basement structure ofthe Cuddapah Basin from gravity anomalies. Tectonophysics, v.223(3–4), pp.411–422.CrossRefGoogle Scholar
  48. Ramakrishnan, M. and Vaidyanadhan, R. (2008) Geology of India (Vol. 1), Geological Society of India, Bangalore, 556p.Google Scholar
  49. Reid, A.B. and Thurston, J.B. (2014) The structural index in gravity and magnetic interpretation: Errors, uses, and abuses. Geophysics v.79(4), pp.J61–J66.CrossRefGoogle Scholar
  50. Reid, A.B., Allsop, J.M., Granser, H., Millett, A.T. and Somerton, I.W. (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, v.55(1), pp.80–91.CrossRefGoogle Scholar
  51. Saha, D. and Mazumder, R. (2012) An overview of the Palaeoproterozoic geology of Peninsular India, and key stratigraphic and tectonic issues. Geol. Soc., London, Spec. Publ., v.365(1), pp.5–29.CrossRefGoogle Scholar
  52. Saha, D. and Tripathy, V. (2012) Palaeoproterozoic sedimentation in the Cuddapah Basin, south India and regional tectonics: a review. Geol. Soc., London, Spec. Publ., v.365(1), pp.161–184.CrossRefGoogle Scholar
  53. Satya Narayan, Sahoo, S.D., Pal, S.K., Kumar, U., Pathak, V.K., Majumdar, T.J. and Chouhan, A. (2016) Delineation of structural features over a part of the Bay of Bengal using total and balanced horizontal derivative techniques. Geocarto Internat., v.32(1), pp.1–16.Google Scholar
  54. Sharma P.V. (1987) Magnetic method applied to mineral exploration. Ore Geology Rev., v.2(4), pp.323–357CrossRefGoogle Scholar
  55. Singh, A. P. and Mishra, D. C. (2002) Tectonosedimentary evolution of Cuddapah basin and Eastern Ghats mobile belt (India) as Proterozoic collision: gravity, seismic and geodynamic constraints. Jour, Geodyn, v.33(3), pp.249–267.CrossRefGoogle Scholar
  56. Singh, A.P., Mishra, D.C., Gupta, S.B. and Rao, M.P. (2004) Crustal structure and domain tectonics of the Dharwar Craton (India): insight from new gravity data. Jour. Asian Earth Sci., v.23(1), pp.141–152.CrossRefGoogle Scholar
  57. Spector, A. and Grant, F.S. (1970) Statistical models for interpreting aeromagnetic data. Geophysics, v.35(2), pp.293–302.CrossRefGoogle Scholar
  58. Tripathy, V. and Saha, D. (2013) Plate margin paleostress variations and intracontinental deformations in the evolution of the Cuddapah basin through Proterozoic. Precambrian Res., v.235, pp.107–130.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2019

Authors and Affiliations

  • Shuva Shankha Ganguli
    • 1
    Email author
  • Satyaveer Singh
    • 1
  • Niharika Das
    • 1
  • Deepak Maurya
    • 1
  • Sanjit Kumar Pal
    • 2
  • J. V. Rama Rao
  1. 1.Geological Survey of IndiaHyderabadIndia
  2. 2.Department of Applied GeophysicsIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations