Advertisement

Journal of the Geological Society of India

, Volume 93, Issue 4, pp 409–418 | Cite as

Proterozoic Magnesian Feldspathic Magmatism in the Nallamalai Fold Belt, Southern India — Petrogenesis of Vellaturu-Ipuru-Nakerikallu (VIN) Arc Magmatic Granites, Eastern Dharwar Craton

  • V. V. Sesha SaiEmail author
Research Article
  • 8 Downloads

Abstract

Through extensive field studies substantiated by detailed petrographic, geochemical and mineral chemistry studies, a significant event of “Proterozoic magnesian feldspathic magmatism” is reported from the SE part of the Indian subcontinent. Three major granitoids i.e. Vellaturu, Ipuru and Nakerikallu (VIN) are emplaced along an NNE-SSW axis in the Proterozoic Nallamalai fold belt (NFB) in the Eastern Dharwar craton (EDC). The axis of emplacement of VIN granites represents a tectonic contact that is juxtaposed along the NE fringes of NFB and adjoining Precambrian accretionary terrain comprising of gneisses and amphibolites with intrusive granites in the northern part of the Nellore schist belt (NSB). Petrographically the VIN granitoids are biotite ± hornblende bearing with apatite and zircon as accessory phases. Exsolution texture is observed in the form of microcline microperthite intergrowth. In IUGS, QAP diagram the VIN granitoids essentially fall in granite — granodiorite field. Presence of mafic rich microgranitoid enclaves (MMEs) are prominently noticed in the VIN granitoids indicating magma mingling. These granitoids are deformed along their margins. Enclaves of quartzite of NFB and older amphibolites indicate the intrusive nature of VIN granitoids. Major oxide analyses indicate that the Mg# ranges from 43 to 56. Rare earth element studies reveal a general enrichment of LREE relative to HREE. Incompatible HFSE element studies indicate a significant Nb and Ti negative anomaly; characteristic of subduction zone magmatism. In Y + Nb vs Rb trace element tectonic discrimination diagram the granitic rocks of Nakerikallu, Ipuru and Vellaturu essentially fall in post-collisional granites (post-COLG) field. Based on the remarkable magnesian feldspathic character coupled with their emplacement in an arc magmatic tectonic setting, it is concluded that the VIN granitoids in the Proterozoic NFB, SE India; mark a significant event of “Proterozoic magnesian feldspathic magmatism” in the EDC.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Fattah M. and Abdel-Rahman (1990) Petrogenesis of Early-Orogenic Diorites, Tonalites and Post-Orogenic Trondhjemites in the Nubian Shield. Jour. Petrol., v.31(6), pp.1285-1312.CrossRefGoogle Scholar
  2. Abu El-Ela, Fawzy F. (1997) Geochemistry of an island-arc plutonic suite: Wadi Dabr intrusive complex, Eastern Desert, Egypt. Jour. African Earth Sci., v.24(4), pp.473–496CrossRefGoogle Scholar
  3. Amarildo S. Ruiz, Mauro C. Geraldes, João B. Matos, Wilson Teixeira, William R. Van Schumus and Renata S. Schmitt (2004) The 1590–1520 Ma Cachoeirinha magmatic arc and its tectonic implications for the Mesoproterozoic SW Amazonian craton crustal evolution An. Acad. Bras. Ciênc. vol.76 no.4 Rio de JaneiroGoogle Scholar
  4. Anand, M., Gibson, S.A., Subba Rao, K.V., Kelley, S.P., Dickin, A.P. (2003) Early Proterozoic melt generation processes beneath the intra-cratonic Cuddapah Basin, Southern India. Jour. Petrol., v.44, pp.2139–2171CrossRefGoogle Scholar
  5. Anderson, L.J. (1983) Proterozoic anorogenic granite plutonism of North America. Geol. Soc. Amer. Mem., v.161, pp.133–154CrossRefGoogle Scholar
  6. Andersen, T., Griffin, W.L. Jackson, S.E., Knudsen, T.L. Pearson, N.J. (2004) Mid Proterozoic magmatic arc evolution at the south western margin of Baltic shield. Lithos, v.73, pp.289–318.CrossRefGoogle Scholar
  7. Bally, A.W. and Palmer, A.R. (1989) Geology of North American Craton, An overview. Geol. Soc. Amer., Volume A.Google Scholar
  8. Bergemann, C., Jung, S., Berndt, J., Stracke, A. And Hauff, F. (2014) Generation of magnesian, high-K alkali-calcic granites and granodiorites from amphibolitic continental crust in the Damara Orogen, Namibia. Lithos, v.6 pp.198Google Scholar
  9. Chalapathi Rao, N.V., Miller, J.A., Gibson, S.A., Pyle, D.M., Madhavan, V. (1999) Precise 40Ar/39Ar Age determinations of the Kotakonda Kimberlite and Chelima lamproite, India: implication for the mafic dyke swarm emplacement in the Eastern Dharwar craton. Jour. Geol. Soc. India, v.53, pp.425–432.Google Scholar
  10. Chalapathi Rao N.V., Fu-Yuan Wu and Srinivas, M. (2012) Mesoproterozoic emplacement and enriched mantle derivation of the Racherla alkali syenite, Paleo-Mesoproterozoic Cuddapah Basin, southern India: insights from in situ Sr-Nd isotopic analysis on apatite. In: Mazumder, R., and Saha, D. (Eds.), Paleoproterozoic of India. Geol. Soc. London Spec. Publ., v.365, pp.185–198.Google Scholar
  11. Chatterjee, N. and Bhattacharji, S. (2001) Petrology, geochemistry and tectonic setting of the mafic dykes and sills associated the evolution of the Proterozoic Cuddapah basin, South India. Indian Acad. Sci. (Earth Planet Sci.), v. 110, pp.433–453Google Scholar
  12. Chen, S., Niu, Y., Sun, W., Zhang, Y., Li, J., Guo, P. and Sun, P. (2015) On the origin of mafic magmatic enclaves (MMEs) in syn-collisional granitoids: evidence from the Baojishan pluton in the North Qilian Orogen, China. Mineral. Petrol., v.109(5), pp.577–596.CrossRefGoogle Scholar
  13. Chen, S., Niu, Y., Que, Q. (2018) Syn-collisional felsic magmatism and continental crust growth: A case study from the North Qilian Orogenic Belt at the northern margin of the Tibetan Plateau. Lithos, v.308–309. pp.35–64Google Scholar
  14. Chetty, T.R.K. (1999) Some observations on the tectonic framework of Southeastern Indian Shield. Gondwana Res., v.2, pp.651–653CrossRefGoogle Scholar
  15. Chetty, T.R.K. and Murthy, D.S.N. (1994) Collision tectonics in Eastern Ghats Mobile Belt: Mesoscopic to Satellite scale structural observations. Terra Nova, v.6, pp.72–81.CrossRefGoogle Scholar
  16. Chetty, T.R.K. (2011) Tectonics of Proterozoic Cuddapah Basin, southern India: A conceptual model. Jour. Geol. Soc. India, v.78(5), pp.446–456.CrossRefGoogle Scholar
  17. Chetty, T.R.K. (2017) Proterozoic Orogens in India; A critical Window to Gondwana. Elsevier publication. p.426Google Scholar
  18. Cobbing, E.J. (1999) The coastal batholith and other aspects of Andean magmatism in Peru. Geol. Soc. London, Spec. Publ., v.168, pp.111–122CrossRefGoogle Scholar
  19. Collins, A.S., Patranabis -Deb, S., Alexander, E., Bertram, C.N., Falster, G.M., Gore, R.J., Mackintosh, J., Dhang, P.C., Saha, D., Payne, J.L., Jourdan, F., Backe, G., Halverson, G.P. and Wade, B.P. (2014) Detrital Mineral Age, Radiogenic Isotopic Stratigraphy and Tectonic Signiûcance of the Cuddapah Basin, India. Gondwana Res., v.28(4), pp.1294–1309.CrossRefGoogle Scholar
  20. Crawford, A.R. and Compston, W. (1973) The age of Cuddapah and Kurnool systems, Southern India. Jour. Geol. Soc. Australia, v.19, pp.453–464.CrossRefGoogle Scholar
  21. Danguene, P.E.Y., Ngnotue, T., Ganno, S., Biandja, J., Kankeu, B. And Nzent, J.P. (2014) Paleoproterozoic Synkinematic Magnesian High-K Magmatism from the Tamkoro-Bossangoa Massif, along the Bossangoa-Bossembele Shear Zone in North-Western Central African Republic. Jour. Geosciences and Geomatics, v.2(4), pp.151–164Google Scholar
  22. Dobmeier, C.J., Lutke, S., Hammerschmidt, K. and Mezge, K. (2006) Emplacement and deformation of the Vinukonda meta-granite (Eastern Ghats, India): implications for the geological evolution of peninsular India and for Rodinia reconstruction. Precambrian Res., v. 146, pp.165–178.CrossRefGoogle Scholar
  23. Fatih Karaoglan, Osman Parlak, Urs Klootzli, Friedrich Koller, Tamer Rizaoglu (2013) Age and duration of intra-oceanic arc volcanism built on a suprasubduction zone type oceanic crust in southern Neotethys, SE Anatolia. Geoscience Frontiers, v. 4(4), pp.399–408.CrossRefGoogle Scholar
  24. Frost, C.D. and O’Nions, R.K. (1985) Caledonian magma genesis and crustal recycling. Jour. Petrol., v.26. pp.515–544.CrossRefGoogle Scholar
  25. Frost, R.B., Frost, C.D., Kirkwood Robert and Chamberlin, K.R. (2006) The tonalite-trondhjemite-granodiorite (TTG) to granodiorite-granite (GG) transition in the late Archean plutonic rocks of the central Wyoming Province. Canadian Jour. Earth Sci., v. 43(10), pp.1419–1444.CrossRefGoogle Scholar
  26. Frost, R.B., Frost, C.D. (2008) A Geochemical Classification for Feldspathic Igneous Rocks. Jour. Petrol., v. 49(11), pp.1955–1969.CrossRefGoogle Scholar
  27. Frost, B.R. and Frost, C.D. (2014) Essentials of Igneous and Metamorphic petrology. Cambridge University Press.Google Scholar
  28. Frost, B. R., Arculus, R. J., Barnes, C. G, Collins, W. J., Ellis, D. J., Frost, C. D. (2001) A geochemical classification of granitic rocks. Jour. Petrol., v.42, pp.2033–2048.CrossRefGoogle Scholar
  29. Geological Survey of India (1981) Explanatory brochure on Geologicl and Mineral Map of Cuddapah Basin, pp.1–21Google Scholar
  30. Hazra Dipak, Anil Kumar, David, J.S. and Suresh, G. (2004) Specialised Thematic Mapping of zones of Igneous intrusives, shears and base metal mineralisation in the eastern half of the Nallamalai Fold Belt between Markapur and Karempudi, Cuddapah basin, Andhra Pradesh. Rec. Geol. Surv. India, v. 136, Pt.5, pp.16–20.Google Scholar
  31. Harper C.T. (2004) Overview of the Geochemistry of Archean and Proterozoic Rocks of the Phelps Lake Region, Mudjatik Domain, Hearne Province. Saskatchewan Geological Survey. Summary of Investigations, v.2. pp.1–24Google Scholar
  32. Hibbard, M.J. (1991) Textural anatomy of twelve magma mixed granitoid systems. In: Didier, J. and Barbarin, B. (Eds), Enclaves and Granite Petrology. Development in Petrology 13, Elsevier, pp.431–444.Google Scholar
  33. Irvine, T.N. and Baragar, W.R.A. (1971) A guide to the chemical classification of common the volcanic rocks. Canadian Jour. Earth Sci., v.8(5), pp.523–548CrossRefGoogle Scholar
  34. Jayananda, M., Moyen, J.F., Martin, H., Peucat, J.J., Auvray, B., Mahabaleswar, B. (2000) Late Archean (2550–2520) juvenile magmatism in the Eastern Dharwar Craton, southern India: constraints from geochronology, Nd–Sr isotopes and whole rock geochemistry. Precambrian Res., v.99, pp.225–254.CrossRefGoogle Scholar
  35. Jayananda, M., Santosh, M., Aadiseshan, K.R. (2018) Formation of Archean (3600–2500 Ma) continental crust in the Dharwar Craton, Southern India. Earth Sci. Rev., v.181, pp.12–42.CrossRefGoogle Scholar
  36. Johnson, K., Barnes, C. G. & Miller, C. A. (1997). Petrology, geochemistry and genesis of high-Al tonalite and trondhjemites of the Cornucopia stock, Blue Mountains, northeastern Oregon. Jour. Petrol., v.38. pp.1585–1611.CrossRefGoogle Scholar
  37. Joseph G. Meert., Manoj K. Pandit (2015) The Archaean and Proterozoic history of Peninsular India: tectonic framework for Precambrian sedimentary basins in India. In: Mazumder, R. & Eriksson, P.G. (Eds), Precambrian Basins of India: Stratigraphic and Tectonic Context. Geol. Soc. London, Mem., no.43, pp.29–54Google Scholar
  38. Joy, S., Jelsma, H., Tappe, S., Armstrong, R. (2015) SHRIMP U-Pb zircon provenance of the Sullavai Group of Pranhita-Godavari Basin and Bairenkonda Quartzite of Cuddapah Basin, with implications for the Southern Indian Proterozoic tectonic architecture. Jour. Asian Earth Sci., v.111, pp.827–839.CrossRefGoogle Scholar
  39. Kelemen, P.B., Shimizu, M., Dunn, T. (1993) Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth Planet. Sci. Lett., v.120, pp.111–134.CrossRefGoogle Scholar
  40. Khanna, T.C., Sesha Sai, V.V., Bizimis, M., Krishna, A.K. (2015) Petrogenesis of Basalt — high-Mg Andesite — Adakite in the Neoarchean Veligallu Greenstone Terrane: geochemical evidence for a rifted back-arc crust in the eastern Dharwar craton, India. Precambrian Res., v.258, pp.260–277.CrossRefGoogle Scholar
  41. King, W. (1872) The Kadapah and Karnul formations in Madras Presidency, Mem. Geol. Surv. India, v.8(1), pp.1–346.Google Scholar
  42. Maniar, P.D., Piccoli, P.M. (1989) Tectonic discriminations of granitoids. Geol. Soc. Amer. Bull., v.101, pp.635–643.CrossRefGoogle Scholar
  43. Manya, S. (2014) Geochemistry of the Palaeoproterozoic gabbros and granodiorites of the Saza area in the Lupa goldfield, southwestern Tanzania. Jour. African Earth Sci., v.100, pp.401–408.CrossRefGoogle Scholar
  44. Manya, S., Maboko, M.A.H., Nakamura, E., (2007) The geochemistry of high-Mg andesites and associated adakitic rocks in the Musoma-Mara greenstone belt, northern Tanzania: possible evidence for Neoarchean ridge subduction? Precambrian Res., v. 159, pp.241–259.CrossRefGoogle Scholar
  45. Manya, S., Maboko, M.A.H. (2016) Generation of Palaeoproterozoic tonalites and associated high-K granites in southwestern Tanzania by partial melting of underplated mafic crust in an intracontinental setting: constraints from geochemical and isotopic data. Lithos, v.260 pp.120–133.CrossRefGoogle Scholar
  46. Merlet, C. (1992) Quantitative Electron Probe Microanalyses: New Accurate Ö (ñz) Description. Microchimica Acta, v. 114(1), pp.363–376Google Scholar
  47. Merlet, C. (1994) An accurate computer correction program for quantitative electron probe microanalysis. Microchimica Acta [Suppl.], 12, pp.107–115CrossRefGoogle Scholar
  48. Nagaraja Rao, B.K., Ramalingaswamy, G., Rajurkar, S.T. (1987) Stratigraphy, structure and evolution of the Cuddapah basin. Purana basins of Peninsular India. Mem. Geol. Soc. India, no.6, pp.33–86Google Scholar
  49. Nagaraju, J., Chetty, T.R.K. (2014) Imprints of tectonics and magmatism in the south eastern part of the Indian shield: satellite image interpretation. Jour. Indian Geophys. Union, v.18(2), pp.165–182.Google Scholar
  50. Narayanswami, S. (1966) Tectonics of the Cuddapah basin. Jour. Geol. Soc. India, v.7, pp.33–50.Google Scholar
  51. Osbourn, E.F. (1959) Role of oxygen pressure in crystallisation and differentiation of basaltic magma. American Jour. Geoscience, v.257 pp.609–647Google Scholar
  52. Pearce, J. (1996) Sources and setting of granitic rocks. Episodes v. 19(4), pp.120–125.Google Scholar
  53. Pearce, J.A., Harris, N.B.W., Tindle, A.G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Jour. Petrol., v.25, pp.956–983.CrossRefGoogle Scholar
  54. Pitcher, W.S. (1993) The Nature and Origin of Granite. Chapman & Hall. Rajurkar, S.T. and Ramlingaswamy, G. (1978) Structure and correlation of the upper Cuddapah strata in the northern part of the Cuddapah basin, A.P. Proceedings of the symp. on Purana formations of Peninsular India. University of Sagar, pp.53–63.Google Scholar
  55. Ravikant, V. (2010) Palaeoproterozoic (~1.9 Ga) extension and breakup along the eastern margin of the Eastern Dharwar Craton, SE India: new Sm–Nd isochorn age constraints from anorogenic maûc magmatism in the Neoarchean Nellore greenstone belt. Jour. Asian Earth Sci., v.37, pp.67–81.CrossRefGoogle Scholar
  56. Rossiter, A.G., Grey, C.M. (2008) Barium contents of granites: key to understanding crustal architecture in the southern Lachlan Fold Belt? Australian Jour. Earth Sci., v.55(4P, pp.433–448Google Scholar
  57. Saha, D. (2002) Multi-Stage Deformation in the Nallamalai Fold Belt, Cuddapah Basin, South India — Implications for Mesoproterozoic Tectonism Along Southeastern Margin of India. Gondwana Res., v.5, pp.701–719.CrossRefGoogle Scholar
  58. Saha, D., Tripathy, V. (2012) Paleoproterozoic sedimentation in the Cuddapah Basin, south India and regional tectonics: a review. In: Mazumder, R. & Saha, D. (Eds.), Paleoproterozoic of India. Geol. Soc. London, Spec. Publ., no.365, pp.161–184.Google Scholar
  59. Saha, D. and Sain, A. (2018) Multiple convergences along an Archean craton margin: clues from Proterozoic ophiolite remnants, granites and granulite domains along the SE margin of India. Accepted manuscript. Jour. Geodyn., DOI:  https://doi.org/10.1016/j.jog.2018.04.004
  60. Santosh M. (2012) India’s Paleoproterozoic legacy. In: Mazumder, R., Saha, D., (Eds.) Paleoproterozoic of India. Geol. Soc. London, Spec. Publ., v.365, pp.263–288.Google Scholar
  61. Schellart, W.P. (2017) Andean mountain building and magmatic arc migration driven by subduction-induced whole mantle flow. Nature communications. 8:2010, pp.1–13CrossRefGoogle Scholar
  62. Sesha Sai, V.V. (2004) Petrographic and Petrochemical charecterisation of Proterozoic granites in Nellore schist belt and northeastern fringes of Cuddapah basin. Rec. Geol. Surv. India, v.137. Part 5, pp.184–188.Google Scholar
  63. Sesha Sai, V.V. (2013) Proterozoic Granite Magmatism along the Terrane Boundary Tectonic Zone to the East of Cuddapah Basin, Andhra Pradesh — Petrotectonic Implications for Precambrian Crustal Growth in Nellore Schist Belt of Eastern Dharwar Craton. Jour. Geol. Soc. India, v.81, pp.167–182.CrossRefGoogle Scholar
  64. Sesha Sai, V.V. (2014) Pyroclastic Volcanism in Papaghni Sub-basin, Andhra Pradesh: Significant Paleoproterozoic Tectonomagmatic Event in SW Part of the Cuddapah Basin, Eastern Dharwar Craton. Jour. Geol. Soc. India, v.83, pp.355–362.CrossRefGoogle Scholar
  65. Sesha Sai, V.V., Vikash Tripathy, Santanu Bhattacharjee, Tarun C. Khanna (2017) Paleoproterozoic magmatism in the Cuddapah basin, India. Jour. Indian Geophys. Union, v.21(6), pp.516–525Google Scholar
  66. Shand, S.J. (1947) The Eruptive Rocks, 3rd edn. NewYork: John Wiley, 444 pp.Google Scholar
  67. Sheppard Stephen, Rassmussen Birger, Zi Jian-Wei, Somashekar, V., Srinivasa Sharma, D., Ram Mohan, M., Bryan Krapez, Simam A. Wlide, Neal J. McNaughton, (2017) Sedimentation and magmatism in the Paleoproterozoic Cuddapah basin, India: Consequences of lithospheric extension. Gondwana Res., v.48, pp.153–163.CrossRefGoogle Scholar
  68. Shimura, T., Komatsu, M. & Iiyama, J. T. (1992) Genesis of the lower crustal garnet-orthopyroxene tonalites (S-type) of the Hidaka metamorphic belt, northern Japan. Transactions of the Royal Society of Edinburgh: Earth Sciences. 83. pp.259–268.CrossRefGoogle Scholar
  69. Sims, P.K., Schulz, K.J., Ed DeWitt and Bruce Brasaemle (1993) Petrography and geochemistry of Early Proterozoic granitoid rocks of Wisconsin magmatic terrenes of Penokean Orogen, North Wisconsin. Contributions to the Precambrian Geology of Lake Superior Region. USGS Bull., 1904-J.1-31Google Scholar
  70. Streckeisen, A. (1976) To each plutonic rock its proper name. Earth Sci. Rev., v. 12, pp.1–33.CrossRefGoogle Scholar
  71. Tripathy, V., Satyapal, Mitra, S.K. and Sesha Sai, V.V. (2018) Fold-thrust belt architecture and structural evolution of the Northern part of the Nallamalai Fold Belt, Cuddapah basin, Andhra Pradesh, India, Accepted publication In, Mukherjee, S. (Ed.) Tectonics & Structural Geology: Indian Context (Springer).Google Scholar
  72. Vernon, R.H. (1984) Microgranitoid enclaves in granites: globules of hybrid magma quenched in a plutonic environment. Nature, v.309, pp.438–439.CrossRefGoogle Scholar
  73. Zafer Aslan (2005) Petrography and Petrology of the Calc-Alkaline Sar›han Granitoid (NE Turkey): An Example of Magma Mingling and Mixing. Turkish Jour. Earth Sci., v. 14, pp.185–207.Google Scholar
  74. Zhao, G., Sun, M., Wilde, S.A. (2003) Correlations between the Eastern Block of the North China Craton and the South Indian Block of the Indian Shield: an Archaean to Palaeoproterozoic link. Precambrian Res., v. 122, pp.201–233.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2019

Authors and Affiliations

  1. 1.Geological Survey of IndiaSouthern Region, HyderabadIndia

Personalised recommendations