Advertisement

Journal of the Geological Society of India

, Volume 93, Issue 4, pp 399–408 | Cite as

Petrogenesis and Geochemical Evolution of Dhauladhar and Dalhousie Granites, NW Himalayas

  • Rimpi Dhiman
  • Sandeep SinghEmail author
Research Article
  • 16 Downloads

Abstract

Whole rock geochemical analysis has been carried out on samples from Dhauladhar and Dalhousie granites of the northwestern region of Himalayas. The mineral assemblage of these granites is K-feldspar, plagioclase, and biotite, with Dhauladhar granite being richer in plagioclase and biotite than the Dalhousie granites. The Dhauladhar granites are mostly coarse to medium-grained porphyritic, variably mylonatized and biotite bearing whereas, the Dalhousie granites are fine-grained two-mica granites. The silica-rich (SiO2=64–72 wt %) Dhauladhar granites have a potassic (K2O/Na2O> 0.9–1.8) and peraluminous (A/CNK=1.03–1.3) character. Dalhousie granites show a similar character, albeit to a different degree (SiO2=69–74 wt %), (K2O/Na2O > 1.1–1.5), (A/CNK=1.3–1.7). The Dalhousie granites are richer in, U, Th, and LREE, yet extremely depleted in Sr, Ba, Nb. They have flatter REE patterns with comparatively strong Eu anomaly (Eu/Eu*=0.02–0.04). The Rb/Ba vs Rb/Sr and CaO/Na2O vs Al2O/TiO2 ratios indicate sedimentary source with the psammitic nature for Dhauladhar and pelitic nature for Dalhousie granites. However, the Eu/Eu* value indicates that plagioclase abundance is greater in Dhauladhar granites than in Dalhousie granites. The present study suggests that Dalhousie granites being more evolved than Dahuladhar granites.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allegre, C.J. and Minster, J.F. (1978) Quantitative models of trace element behavior in magmatic processes. Earth Planet. Sci. Lett., v.38(1), pp.1–25.CrossRefGoogle Scholar
  2. Bea, F., Montero, P. G., Gonzalez-Lodeiro, F., Talavera, C., Molina, J. F., Scarrow, J. H., … and Zinger, T. (2006) Zircon thermometry and U-Pb ion-microprobe dating of the gabbros and associated migmatites of the Variscan Toledo Anatectic Complex, Central Iberia. Jour. Geol. Soc. London, v. 163(5), 847–855Google Scholar
  3. Bhatia, G.S. and Kanwar, R.C. (1973) Mylonitization in outer Granite Band of Dalhousie, Himachal Pradesh. Himalayan Geol., v.3 pp.103–115Google Scholar
  4. Bhatia, G.S. (1975) Contribution to the Geology of Dalhousie Chamba area Himachal Pradesh, India.Google Scholar
  5. Cawood, P.A., Johnson, M.R. and Nemchin, A.A. (2007) Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. Earth Planet. Sci. Lett., v.255(1–2), pp.70–84. doi:  https://doi.org/10.1016/j.epsl.2006.12.006.CrossRefGoogle Scholar
  6. Chappell, B.W. and White, A.J.R. (1992) I-and S-type granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, v.83(1–2), pp.1–26. doi: https://doi.org/10.1017/S0263593300007720 Google Scholar
  7. Chappell, B.W. and White, A.J. (2001) Two contrasting granite types: 25 years later. Australian Jour. Earth Sci., v.48(4), pp.489–499. doi: https://doi.org/10.1046/j.1440-0952.2001.00882.x CrossRefGoogle Scholar
  8. Chaudhri, N. (1996) Geochemistry and petrogenesis of the Palampur Granitoids, Dhauladhar range, northwestern Himalaya, India. Chemie Der Erde -Geochemistry, v.56(1), pp.25–43.Google Scholar
  9. Clemens, J.D. (2003) S-type granitic magmas—petrogenetic issues, models and evidence. Earth-Science Rev., pp.611–612, pp.1–18.Google Scholar
  10. Clemens, J.D. and Stevens, G. (2012) What controls chemical variation in granitic magmas?. Lithos, v.134, pp.317–329. doi: https://doi.org/10.1016/j.lithos.2012.01.001 CrossRefGoogle Scholar
  11. Collins, W. J. and Sawyer, E.W. (1996) Pervasive granitoid magma transfer through the lower-middle crust during non coaxial compressional deformation. Jour.Metamor. Geol., v.14(5), doi: https://doi.org/10.1046/j.1525-1314.1996.00442.x
  12. Conrad, W.K., Nicholls, I.A. and Wall, V.J. (1988) Water-saturated and-undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: evidence for the origin of silicic magmas in the Taupo Volcanic Zone, New Zealand, and other occurrences. Jour. Petrol., v.29(4), pp.765–803.CrossRefGoogle Scholar
  13. DeCelles, P. G., Gehrels, G. E., Quade, J., LaReau, B. and Spurlin, M. (2000) Tectonic implications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal. Science, v.288(5465), pp.497–499.CrossRefGoogle Scholar
  14. DePaolo, D. J. (1981). Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planetary Sci. Lett., v.53(2), 189–202.CrossRefGoogle Scholar
  15. Frank, W., Thoni, M. and Purtscheller, F. (1977) Geology and petrography of Kullu-South Lahul area. — Colloques Internationaux du C.N.R.S., v. 286, pp.147–172.Google Scholar
  16. Frost, B.R. and Frost, C.D. (2013) Essentials of igneous and metamorphic petrology. Cambridge University PressGoogle Scholar
  17. Gao, L.E. and Zeng, L. (2014) Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet. Geochim. Cosmochim. Acta, v.130, pp.136–155.CrossRefGoogle Scholar
  18. Harris, N.B.W. and Inger, S. (1992) Trace element modelling of pelite-derived granites. Contrib. Mineral. Petrol., v. 110(1), 46–56. doi: https://doi.org/10.1007/BF00310 CrossRefGoogle Scholar
  19. Healy, B., Collins, W.J. and Richards, S.W. (2004) A hybrid origin for Lachlan S-type granites: the Murrumbidgee Batholith example. Lithos, v.78(1–2), pp.197–216. doi: https://doi.org/10.1016/j.lithos.2004.04.047 CrossRefGoogle Scholar
  20. Holtz, F., Behrens, H., Dingwell, D.B. and Taylor, R.P. (1992) Water solubility in aluminosilicate melts of haplogranite composition at 2 kbar. Chemical Geol., v.96(3–4), pp.289–302.CrossRefGoogle Scholar
  21. Holtz, F. and Johannes, W. (1994) Maximum and minimum water contents of granitic melts: implications for chemical and physical properties of ascending magmas. Lithos, v.32(1–2), 149–159. doi: https://doi.org/10.1016/0024-4937(94)90027-2 CrossRefGoogle Scholar
  22. Inger, S. and Harris, N. (1993) Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. Jour. Petrol., 34(2), pp.345–368. doi: https://doi.org/10.1093/petrology/34.2.345.CrossRefGoogle Scholar
  23. Irber, W. (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu”, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim. Cosmochim. Acta, v.63(3–4), pp.489–508.CrossRefGoogle Scholar
  24. Irvine, T. N. J. and Baragar, W.R.A. (1971) A guide to the chemical classification of the common volcanic rocks. Canadian Jour. Earth Sci., v.8(5), pp.523–548.CrossRefGoogle Scholar
  25. Jung, S. and Pfander, J. A. (2007) Source composition and melting temperatures of orogenic granitoids: constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. European Jour. Mineral., v.19(6), pp.859–870. doi: https://doi.org/10.1127/0935-1221/2007/0019-1774 CrossRefGoogle Scholar
  26. Kemp, A.J. and Hawkesworth, C.J. (2003) Granitic Perspectives on the Generation and Secular Evolution of the Continental Crust. In: R.L. Rudnick (Ed.), The Crust (Treatise on Geochemistry, Vol 3) (pp. 349–410). Amsterdam: Elsevier.Google Scholar
  27. Kansal, A. K., Singh, V. P., Anupam, K., & Bhanot, V. B. (2003) Rb–Sr isotopic and geochronological studies of the granitic rocks of Dalhousie area, Himachal Pradesh. In: ISMAS silver jubilee symposium on mass spectrometry. V.2: contributed papers.Google Scholar
  28. Lahoti, S., Kumud, K., Gupta, Y. and Jain, A.K. (2017) Tectonics ofthe Chamba Nappe, NW Himalaya and its regional implications. Italian Jour. Geosci., v.136, pp.50–63. doi: 0.3301/IJG.2015.39CrossRefGoogle Scholar
  29. Le Fort, P. (1983) The lower Paleozoic “Lesser Himalayan” granitic belt: emphasis on the Simchar pluton of Central Nepal. Granites of Himalayas, Karakorum and Hindu Kush, pp.235–255.Google Scholar
  30. Le Fort, P. (1986) The 500 Ma magmatic event in Alpine southern Asia, a thermal episode at Gondwana scale. Evolution des Domaines Orogeniques d’Asie Meridionale, 47, 191–209.Google Scholar
  31. Le Fort, P., Cuney, M., Deniel, C., France-Lanord, C., Sheppard, S.M.F., Upreti, B. N. and Vidal, P. (1987) Crustal generation of the Himalayan leucogranites. Tectonophysics, v.134(1–3), pp.39–57. doi: https://doi.org/10.1016/0040-1951(87)90248-4 CrossRefGoogle Scholar
  32. McMahon, C.A. (1881) Note on the section from Dalhousie to Pangi via Sach Pass. Rec. Geol. Surv. India, v.14, pp.305–310.Google Scholar
  33. Miller, C., Thöni, M., Frank, W., Grasemann, B., Klötzli, U., Guntli, P. and Draganits, E. (2001) The early Palaeozoic magmatic event in the Northwest Himalaya, India: source, tectonic setting and age of emplacement. Geol. Magz., v.138(3), pp.237–251.Google Scholar
  34. Mukherjee, P.K., Purohit, K.K., Rathi, M.S. and Khanna, P.P., (1998) Geochemistry and Petrogenesis of a Supracrustal Granite from Dalhousie, Himachal Himalaya. Jour. Geol. Soc. India, v.52, pp.163–180.Google Scholar
  35. Nautiyal, S.P., Dhoundhial, D.P., Nadgir, B.B., Das Gupts, S.P. and Ramachanndra, A.V. (1952) Suitability of the Dharakot Limestone for Portland cement manufacture, Kangra, H.P. Rec. Geol. Surv. India, v.87(4), pp.707–750.Google Scholar
  36. Patino Douce, A. E. (1997) Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, v.25(8), pp.743–746. doi: https://doi.org/10.1130/0091-7613.CrossRefGoogle Scholar
  37. Patino Douce, A. E. (1999). What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol. Soc. London, Spec. Publ., v.168(1), pp.55–75. doi: https://doi.org/10.1144/GSL.SP.1999.168.01.05 CrossRefGoogle Scholar
  38. Patino Douce, A.E. and Beard, J.S. (1996). Effects of P, f(O2) and Mg/Fe ratio on dehydration melting of model metagreywackes. Jour. Petrol., v.37(5), pp.999–1024.CrossRefGoogle Scholar
  39. Rollinson, H.R. (2014) Using geochemical data: evaluation, presentation, interpretation. RoutledgeGoogle Scholar
  40. Satyanarayanan, M., Balaram, V., Sawant, S.S., Subramanyam, K.S.V. and Krishna, G.V. (2014) High precision multielement analysis on geological samples by HR-ICPMS. In 28th ISMAS Symposium Cum Workshop on Mass Spectrometry. Indian So. Mass Spectrometry, Mumbai, India, pp.181–184Google Scholar
  41. Singh, S. and Jain, A.K. (1996). Ductile shearing of the Proterozoic Chor Granitoid in the Lesser Himalaya and its tectonic significance. Jour. Geol. Soc. India, v.47(1), pp.133–138.Google Scholar
  42. Singh, S. and Jain, A.K. (2003). Himalayan granitoids. Jour. Virtual Explorer, v.11, pp.1–20.Google Scholar
  43. Singh, J. and Johannes, W. (1996) Dehydration melting of tonalites. Part I. Beginning of melting. Contrib. Mineral. Petrol., v.125(1), pp.16–25.CrossRefGoogle Scholar
  44. Singh, S. (2003) Conventional and SHRIMP U-Pb Zircon Dating of the Chor Granitoid, Himachal Himalaya. Jour. Geol. Soc. India, v.62, pp.614–626.Google Scholar
  45. Singh, S. (2005) A review of U-Pb ages from Himalayan Collisonal Belt. Jour. Himalayan Geol., v.26, pp.61–76.Google Scholar
  46. Singh, S., Barley, M.E., Brown, S.J., Jain, A.K. and Manickavasagam, R.M. (2002) SHRIMP U-Pb in zircon geochronology of the Chor granitoid: evidencefor Neoproterozoic magmatism in the Lesser Himalayan granite belt of NW India. Precambrian Res., v.118, pp.285–292. doi: https://doi.org/10.1016/S0301-9268(02)00107-9 CrossRefGoogle Scholar
  47. Sun, S.S. and McDonough, W.S. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc., London, Spec. Publ., v. 42(1), pp.313–345.CrossRefGoogle Scholar
  48. Sylvester, P.J. (1998) Post-collisional strongly peraluminous granites. Lithos, v.45(1–4), pp.29–44. doi: https://doi.org/10.1016/S0024-4937(98)00024-3 CrossRefGoogle Scholar
  49. Thakur, V.C., Rautela, P. and Jafaruddin, M. (1995). Normal faults in Panjal thrust zone in lesser Himalaya and between the higher Himalaya crystallines and Chamba sequence in Kashmir Himalaya, India. Proc. Indian Acad. Sci. EarthPlanet. Sci., v. 104(3), pp.499–508.Google Scholar
  50. Thirlwall, M.F. and Jones, N.W. (1983) Isotope geochemistry and contamination mechanics of Tertiary lavas from Skye, Northwest Scotland. Continental basalts and mantle xenoliths, pp.186–208.Google Scholar
  51. Watkins, J.M., Clemens, J.D. and Treloar, P.J. (2007) Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6–1.2 GPa. Contrib. Mineral. Petrol., v.154(1), pp.91–110.CrossRefGoogle Scholar
  52. Weinberg, R.F. and Hasalová, P. (2015) Water-fluxed melting ofthe continental crust: A review. Lithos, v.212, pp.158–188.CrossRefGoogle Scholar
  53. Zaraysky, GP., Alfereva, J.O. and Udoratina, O.V. (2007) Geochemical features of the tantalum deposit in Eastern Transbaikalia Etyka. In: Sixth International Hutton Symposium. Origin of granites and related rocks. Abstract. Stellenbosch, South Africa (pp. 232–233).Google Scholar
  54. Zheng, Y.F., Zhou, J.B., Wu, Y.B. and Xie, Z. (2005) Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: A passive-margin accretionary wedge deformed during continent subduction. Internat. Geol. Rev., v.47(8), pp.851–871. doi: https://doi.org/10.2747/0020-6814.47.8.851.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2019

Authors and Affiliations

  1. 1.Department of Earth SciencesIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations