Advertisement

Journal of the Geological Society of India

, Volume 92, Issue 6, pp 657–660 | Cite as

Discriminating Tectonic and Magmatic Fabrics in the Remal Granite Gneiss: Implications for Terrane Amalgamation Processes in Southeastern Singhbhum, India

  • Ritabrata Dobe
  • Saibal Gupta
Article

Abstract

The Remal granite gneiss body in the southeastern part of the Singhbhum Craton, near its contact with the Rengali Province, preserves two orthogonal penetrative foliations. The subhorizontal foliation defines cross and trough bedding structures, and is characterized by (i) systematic grain-size variation between the layers, (ii) the presence of feldspar laths and (iii) graphic intergrowth textures, confirming that it is primary and of igneous origin (Sign). Sign has a non-planar geometry and shows a spread in orientations, while a later foliation of tectonic origin is defined by alternating biotite-rich and biotite poor bands that define a consistently oriented gneissic foliation (S1). S1 gneissic layering is associated with the alignment of biotite flakes and myrmekite formation, and operated under low grade metamorphic conditions. S1 shows a remarkable similarity in orientation with the shear fabric along the amalgamation front of the Rengali Province with the Eastern Ghats Province further to the south, indicating that strain related to this regional strike-slip event can be identified even in southeastern Singhbhum.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baxter, S., Feely, M. (2003) Field and Petrographic Evidence for Magma Mixing and Mingling in Granitoids: Examples from the Galway Granite, Connemara. doi:10.1007/s00710-001-0178-8Google Scholar
  2. Bhattacharya, S. (1997) Evolution of Eastern Ghats granulite belt of India in a compressional tectonic regime and juxtaposition against Iron Ore Craton of Singhbhum by oblique collision — transpression. Proc. Indian Acad. Sci. (Earth Planet. Sci.), v.106, pp.65–75. doi:10.1007/BF02839281Google Scholar
  3. Charlier, B., Namur, O., Latypov, R., Tegner, C. (2015) Layered intrusions, 1st ed, Layered Intrusions. Springer Netherlands. doi:10.1007/978-94-017-9652-1CrossRefGoogle Scholar
  4. Chaudhuri, T., Wan, Y., Mazumder, R., Ma, M., Liu, D. (2018) Evidence of Enriched, Hadean Mantle Reservoir from 4.2-4.0 Ga zircon xenocrysts from Paleoarchean TTGs of the Singhbhum Craton, Eastern India. Sci. Rep. 8, 7069. doi:10.1038/s41598-018-25494-6CrossRefGoogle Scholar
  5. Emeleus, C.H. (1963) Structural and petrographic obsrevations on layered granites from Southern Greenland. Mineral. Soc. Am. Spec. paper, pp.22–29.Google Scholar
  6. Fenn, P.M. (1986) On the origin of graphic granite. Am. Mineral., v.71, pp.325–330.Google Scholar
  7. Ghosh, G., Bose, S., Das, K., Dasgupta, A., Yamamoto, T., Hayasaka, Y., Chakrabarti, K., Mukhopadhyay, J. (2016) Transpression and juxtaposition of middle crust over upper crust forming a crustal scale flower structure: Insight from structural, fabric, and kinematic studies from the Rengali Province, eastern India. Jour. Struct. Geol., v.83, pp.156–179. doi:10.1016/j.jsg.2015.12.006CrossRefGoogle Scholar
  8. Ghosh, G., Bose, S., Guha, S., Mukhopadhyay, J., Aich, S. (2010) Remobilization of the southern margin of the Singhbhum Craton, eastern India during the Eastern Ghats orogeny. Indian Jour. Geol., v.80, pp.97–114.Google Scholar
  9. Ghosh, G., Kumari, S., Patil, S.K., Mukhopadhyay, J., Ray, A. (2010) Superposed deformation fabrics in the Precambrian metabasic rocks of the Iron Ore Group, Singhbhum craton, Eastern India: Evidences from anisotropy of magnetic susceptibility studies. Jour. Struct. Geol., v.32, pp.249–261. doi:10.1016/j.jsg.2009.12.002CrossRefGoogle Scholar
  10. Glazner, A.F., Boudreau, A. (2011) Metamorphism of thought about igneous rock textures. Int. Geol. Rev., v.53, pp.327–329. doi:10.1080/00206814.2010.496165CrossRefGoogle Scholar
  11. Holness, M.B., Cheadle, M.J., McKenzie, D. (2005) On the use of changes in dihedral angle to decode late-stage textural evolution in cumulates. J. Petrol., v.46, pp.1565–1583. doi:10.1093/petrology/egi026CrossRefGoogle Scholar
  12. Holness, M.B., Clemens, J.D., Vernon, R.H. (2018) How deceptive are microstructures in granitic rocks? Answers from integrated physical theory, phase equilibrium, and direct observations. Contrib. Mineral. Petrol., v.173, pp.62. doi:10.1007/s00410-018-1488-8CrossRefGoogle Scholar
  13. Holness, M.B., Humphreys, M.C.S., Sides, R., Helz, R.T., Tegner, C. (2012) Toward an understanding of disequilibrium dihedral angles in mafic rocks. Jour. Geophys. Res., Solid Earth, v.117. doi:10.1029/2011JB008902Google Scholar
  14. Holness, M.B., Tegner, C., Nielsen, T.F.D., Stripp, G., Morse, S.A. (2007) A textural record of solidification and cooling in the skaergaard intrusion, East Greenland. Jour. Petrol., v.48, pp.2359–2377. doi:10.1093/petrology/egm064CrossRefGoogle Scholar
  15. Kretz, R. 1983. Symbols for rock-forming minerals. Amer. Mineral., v.68, pp.277–279.Google Scholar
  16. McBirney, A.R. (2009) Factors governing the textural development of Skaergaard gabbros: A review. Lithos, v.111, pp.1–5. doi:10.1016/j.lithos.2008.09.009CrossRefGoogle Scholar
  17. Means, W.D., Park, Y. (1994) New experimental approach to understanding igneous texture. Geology, v.22, pp.323–326.CrossRefGoogle Scholar
  18. Mishra, S., Deomurari, M.P., Wiedenbeck, M., Goswami, J.N., Ray, S., Saha, A.K. (1999) 207Pb/206Pb zircon ages and the evolution of the Singhbhum Craton, eastern India: An ion microprobe study. Precambrian Res., v.93, pp.139–151. doi:10.1016/S0301-9268(98)00085-0CrossRefGoogle Scholar
  19. Misra, S., Gupta, S. (2014) Superposed deformation and inherited structures in an ancient dilational step-over zone: Post-mortem of the Rengali Province, India. Jour. Struct. Geol. v.59, pp.1–17. doi:10.1016/j.jsg.2013.11.004CrossRefGoogle Scholar
  20. Mukhopadhyay, J., Ghosh, G., Zimmermann, U., Guha, S., Mukherjee, T., (2012) A 3.51Ga bimodal volcanics-BIF-ultramafic succession from Singhbhum Craton: Implications for Palaeoarchaean geodynamic processes from the oldest greenstone succession of the Indian subcontinent. Geol. Jour., v.47, pp.284–311. doi:10.1002/gj.1314Google Scholar
  21. Nash, C.R., Rankin, L.R., Leeming, P.M., Harris, L.B. (1996) Delineation of lithostructural domains in northern Orissa (India) from Landsat Thematic Mapper imagery. Tectonophysics, v.260, pp.245–257. doi:10.1016/0040-1951(95)00187-5CrossRefGoogle Scholar
  22. Naslund, H.R., McBirney, A.R. (1996) Mechanisms of Formation of Igneous Layering, in: Cawthorn, R.G. (Ed.), Layered Intrusions, Developments in Petrology. Elsevier, pp.1–43. doi:10.1016/S0167-2894(96)80003-0Google Scholar
  23. Pupier, E., Barbey, P., Toplis, M.J., Bussy, F. (2008) Igneous layering, fractional crystallization and growth of granitic Plutons: The dolbel batholith in SW Niger. Jour. Petrol., v.49, pp.1043–1068. doi:10.1093/petrology/egn017CrossRefGoogle Scholar
  24. Roy, A.B., Bhattacharya, H.N. (2012) Tectonostratigraphic and geochronologic reappraisal constraining the growth and evolution of Singhbhum Archaean craton, Eastern India. Jour. Geol. Soc. India, v.80, pp.455–469. doi:10.1007/s12594-012-0165-1CrossRefGoogle Scholar
  25. Saha, A.K. (1994) Crustal Evolution of Singhbhum-North Orissa, Eastern India. Geol. Soc. India.Google Scholar
  26. Sawant, A., Gupta, S., Clark, C., Misra, S. (2017) The Rauer-Rengali connection in the Indo-Antarctica amalgam: Evidence from structure, metamorphism and geochronology. Geol. Soc. London, Spec. Publ., no.457, SP457.9. doi:10.1144/SP457.9Google Scholar
  27. Simpson, C. (1985) Deformation of granitic rocks across the brittle-ductile transition. Jour. Struct. Geol., v.7, pp.503–511. doi:10.1016/0191-8141(85)90023-9CrossRefGoogle Scholar
  28. Solgadi, F., Sawyer, E.W. (2008) Formation of igneous layering in granodiorite by gravity flow: A field, microstructure and geochemical study of the Tuolumne Intrusive Suite at Sawmill Canyon, California. Jour. Petrol. v.49, pp.2009–2042. doi:10.1093/petrology/egn056CrossRefGoogle Scholar
  29. Stipp, M., Stünitz, H., Heilbronner, R., Schmid, S.M. (2002) The eastern Tonale fault zone: A “natural laboratory” for crystal plastic deformation of quartz over a temperature range from 250 to 700°C. Jour. Struct. Geol., v.24, pp.1861–1884. doi:10.1016/S0191-8141(02)00035-4CrossRefGoogle Scholar
  30. Vernon, R.H. (2004) A Practical Guide To Rock Microstructure, Cambridge University Press. doi:10.1017/CBO9780511807206CrossRefGoogle Scholar
  31. Vernon, R.H., Paterson, S.R. (2008) How extensive are subsolidus grain-shape changes in cooling granites? Lithos 105, 42–50. doi:10.1016/j.lithos.2008.02.004CrossRefGoogle Scholar
  32. Vukmanovic, Z., Holness, M.B., Monks, K., Andersen, J.C.Ø. (2018) The Skaergaard trough layering: sedimentation in a convecting magma chamber. Contrib. Mineral. Petrol., v.173. doi:10.1007/s00410-018-1466-1Google Scholar

Copyright information

© Geological Society of India 2018

Authors and Affiliations

  1. 1.Department of Geology & GeophysicsIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations