Journal of the Geological Society of India

, Volume 92, Issue 4, pp 427–434 | Cite as

A Preliminary Evaluation on the Prospects of Hydrocarbon Potential in the Carbonaceous Shales of Spiti and Chikkim Formations, Tethys Himalaya, India

  • Bindhyachal Pandey
  • Deo Brat Pathak
  • Neeraj Mathur
  • Anand K. Jaitly
  • Alok K. Singh
  • Prakash K. SinghEmail author
Research Articles


In the present investigation, an attempt has been made to explore the possibility of hydrocarbon prospects in the carbonaceous shale deposits of Spiti and Chikkim formations exposed in the Spiti valley of the Tethys Himalaya. Twenty samples, collected from successive levels of these litho-units, have been subjected to maceral analysis, Rock-Eval Pyrolysis and six samples to Fourier Transform Infra-red Spectroscopy (FTIR) and nuclear magnetic resonance (NMR) analyses. The study reveals the presence of mainly kerogen-III type of organic matter but some of the shale samples have shown a good amount of total organic carbon (TOC) to the tune of 3.19% which is sufficient to produce hydrocarbon. The results indicate the presence of methane occurring as free and fixed hydrocarbon in the shale samples. Few levels are especially rich in hydrocarbon. They have shown encouraging results with potential for generating liquid as well as lighter hydrocarbon. The data is also supported by the FTIR and NMR studies.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anand, V., Hirasaki, G.J., Fleury, M. (2008) NMR diffusional coupling: effects of temperature and clay distribution. Petrophysics, v.49(4), pp.362–372.Google Scholar
  2. Bhargava, O.N. (2008) An updated introduction to the Spiti Geology. Jour. Palaeont. Soc. India, v.53(2), pp.113–129.Google Scholar
  3. Bhargava, O.N., Bassi, U.K. (1998) Geology of the Spiti-Kinnaur, Himachal Himalaya. Mem. Geol. Surv. India, v.124, pp.1–210.Google Scholar
  4. Bertle, R.J. and Suttner, T.J. (2005) New biostratigraphic data from the Chikkim Formation (Cretaceous, Tethys Himalaya, India). Cretaceous Res., v.26, pp.882–894.CrossRefGoogle Scholar
  5. Daigle, H., Johnson, A., Gips, J.P., Sharma, M.(2014) Porosity valuation of Shales Using NMR Secular Relaxation. URTEC 1905272 presented at the Unconventional Resources Technology Conference in Denver, Colorado, USA, August 25–27.Google Scholar
  6. Dembicki, H. (2009) Three common source rock evaluation errors made by geologists during prospect or play appraisals, AAPG Bull., v.93, pp.341–356.CrossRefGoogle Scholar
  7. Espitalie, J., Marquis, F. and Barsony, I. (1985) Geochemical logging. In: K. J. Voorhees (Ed.), Analytical Pyrolysis - Techniques and Applications. Boston, Butterworth, pp.276–304.Google Scholar
  8. Fang, H. and Jianyu, C. (1992) The cause and mechanism of vitrinite reflectance anomalies. Jour. Petrol. Geol., v.15(4), pp.419–434.CrossRefGoogle Scholar
  9. Fleury, M. (2014) Characterization of shales with low field NMR, in: The International Symposium of Core Analysts, Avignon, France, 8–11 September, SCA2014-014.Google Scholar
  10. Furimsky, E., Mc Phee, J.A., Vancea, L.A. and Nandi, B. (1983) Effect of oxidation on the chemical nature and distribution of low-temperature pyrolysis products from bituminous coals. Fuel, pp.395–400.Google Scholar
  11. Hayden, H.M. (1904) The geology of the Spiti. Mem. Geol. Surv. India. v.36(1), pp.1–129.Google Scholar
  12. Van Krevelen, D.W. (1961) Coal: Typology - Chemistry - Physics- Constitution. Elsevier, Amsterdam, 514p.Google Scholar
  13. Jones, R.W., Edison, T.A. (1978) Microscopic observations of kerogen related to chemical parameters with emphasis on thermal maturation. In: Oltz, D.F. (Ed.), Symposium in Geochemistry: Low Temperature Metamorphism of Kerogen and Clay Minerals. Society of Economic Palaeontologists and Mineralogists, Los Angeles, pp. 1–12.Google Scholar
  14. Landis, P., Monthious, M. and Meunier, J.D. (1984) Importance of the oxidation/ maturation pair in the evolution of humic coals. Org. Geochem., v.7, pp.249–260.CrossRefGoogle Scholar
  15. Leckie, R. M., Yuretich, R. F. West, O. L. O. Finkelstein, D. and Schmidt, M. (1998) Paleoceanography of the southwestern Western Interior Sea during the time of the Cenomanian-Turonian boundary (Late Cretaceous), In: W. E. Dean, and M. A. Arthur (Eds.), Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA, Concepts in Sedimentol. Paleontol. Soc. Sediment. Geol., Tulsa, Okla, v.6, pp.101–126.Google Scholar
  16. Lecompte, B., Hursan, G., Hughes, B. (2010) Quantifying source rock maturity from logs. How to get more than TOC from Delta Log R, SPE Ann. Tech. Confer. Exhibit. Held in Florence, Italy, pp.19–22.Google Scholar
  17. Lukender, A., Suttner T.J. and Bertle, R.J. (2013) New ammonoid taxa from the Lower Cretaceous Giumal Formation of the Tethyan Himalaya (northern India). Palaeontology, v.56(5), pp.991–1028.CrossRefGoogle Scholar
  18. Mehana, M. and El-monier, I. (2016) Shale characteristics impact on Nuclear Magnetic Resonance (NMR) fluid typing methods and correlations. Petroleum, v.2, pp.138–147CrossRefGoogle Scholar
  19. Monthioux, M., Landais, P. and Monin, J.C. (1985) Comparison between natural and artificial maturation series of humic coals from the Mahakam delta, Indonesia. Org. Geochem., v.8, pp.275–292.CrossRefGoogle Scholar
  20. Nady, M. M. El., Ramadan, F.S., Hammad, M.M. and Lotfy, N.M. (2015) Evaluation of organic matters, hydrocarbon potential and thermal maturity of source rocks based on geochemical and statistical methods: Case study of source rocks in Ras Gharib oilfield, central Gulf of Suez, Egypt. Egyptian Jour. Petroleum, v.24(2), pp.203–211.CrossRefGoogle Scholar
  21. Oberlin. A., Boulmier, J.L. and Villey, M. (1980) Electron microscopic study of kerogen microtexture. In: Durand B. (Ed), Selected criteria for determining the evolution path and stage of kerogen. Kerogen. Technip, Paris, pp.191–241.Google Scholar
  22. Otis, RM, Schneidermann, N. (1997) A process for evaluating exploration prospects. AAPG Bull., v.81, pp.1087–1109.Google Scholar
  23. Pandey, B., Pathak, D.B., Krishna, J. (2013) Preliminary remarks on new ammonoid collection from freshly exposed succession of the Spiti Formation between Lidang and Giumal, Spiti Valley, Himachal Himalaya, India. Himalayan Geol., v.34(2), pp.124–134.Google Scholar
  24. Pandey, B., Pathak, D.B. (2015) Status of the Indian Early Cretaceous ammonoid record in light of recent observations in the Spiti Valley, Himachal Himalaya. Himalayan Geol., v.36(1), pp.1–8.Google Scholar
  25. Pandey, B. and Pathak, D. B. 2016. The possibility of the Oceanic Anoxic Events (OAEs) study in the Indian marine Jurassic-Cretaceous outcrops. Jour. Geol. Soc. India, v.87, pp 261–267.CrossRefGoogle Scholar
  26. Pathak, D.B. (1997) Ammonoid Stratigraphy of the Spiti Shale Formation in the Spiti Himalaya, India. Jour. Geol. Soc. India, v.50(2), pp.191–200.Google Scholar
  27. Pathak, D.B. (1997) Jurassic/Cretaceous boundary in the Spiti Himalaya, India. Jour. Palaeont. Soc. India, v.52(1), pp. 51–57.Google Scholar
  28. Peters, K. E. (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG. Bull. v.70(3), pp.318–329.Google Scholar
  29. Peters, K. E. and Cassa, M. R. (1994) Applied source rock geochemistry. In: Magoon, L. B., Dow, W. G. (Eds.), The Petroleum System — From Source to Trap. AAPG Mem. no.60, pp.93–119.Google Scholar
  30. Raju, S.V. and Mathur, N. (2013) Rajasthan lignite as a source of unconventional oil. Curr. Sci., v.104(6), pp.752–757.Google Scholar
  31. Rezaee, R. (2002) Petroleum Geology. Alavi Publication, 479p.Google Scholar
  32. Rouxhet, P.G., Villey, M. and Oberlin, A. (1979) Infra-red study of the pyrolysis products of sporopollenin and lignite. Geochim. Cosmochim Acta, v.43, pp.1705–1713.CrossRefGoogle Scholar
  33. Singh, M.P. and Singh, P. K. (1994a) Indications of Hydrocarbon generation in the coal deposits of the Rajmahal basin, Bihar: Revelation of Fluorescence microscopy. Jour. Geol. Soc. India, v.43(6), pp.647–658.Google Scholar
  34. Singh, M.P. and Singh, P.K. (1994b) Comment and Reply on the paper ‘Indications of Hydrocarbon generation in the coal deposits of the Rajmahal basin, Bihar: Revelation of Fluorescence microscopy’. Jour. Geol. Soc. India, v.44, pp.588–590.Google Scholar
  35. Singh, P.K. (2012) Petrological and Geochemical considerations to predict oil potential of Rajpardi and Vastan lignite deposits of Gujarat, Western India. Jour. Geol. Soc. India, v.80(6), pp.759–770CrossRefGoogle Scholar
  36. Singh, P. K., Singh, M.P., Singh, A.K., Arora Mukesh and Naik, A.S. (2013) Prediction of liquefaction behavior of East Kalimantan coals of Indonesia: an appraisal through petrography of selected coal samples. Ener. Sour. Pt A: Recov. Utili. Env. Effects, v.35, pp.1728–1740.CrossRefGoogle Scholar
  37. Singh, P. K., Rajak, P. K., Singh, V. K, Singh, M. P., Naik, A. S. and Raju, S.V. (2016a) Studies on thermal maturity and hydrocarbon potential of lignites of Bikaner-Nagaur basin, Rajasthan. Ener. Explor. Explo., SAGE Pub. Co. Ltd, UK., v.34(1), pp.140–157.Google Scholar
  38. Singh, P. K., Singh, V. K., Rajak, P. K., Singh, M. P., Naik, A. S., Raju S.V. and Mohanty, D. (2016b) Eocene lignites from Cambay basin, Western India: an excellent source of Hydrocarbon. Geosci. Front., v.7, pp.811–819.CrossRefGoogle Scholar
  39. Singh, P.K., Rajak, P.K., Singh, M.P., Singh, V.K. and Naik, A.S. (2016c) Geochemistry of Kasnau-Matasukh lignites, Nagaur basin, Rajasthan (India). Int. Jour. Coal Sci. & Tech., v.3(2), pp.104–122.CrossRefGoogle Scholar
  40. Singh, P.K., Singh, V.K., Rajak, P.K. and Mathur, N. (2017) A study on assessment of hydrocarbon potential of the lignite deposits of Saurashtra Basin, Gujarat (Western India). Int. Jour. Coal Sci. Tech. v.4(4), pp.310–321.CrossRefGoogle Scholar
  41. Srikantia, S.V. (1981) The lithosratigraphy, sedimentation and structure of the Proterozoic-Phanerozoic formations of Spiti Basin in the Higher Himalaya of Himachal Pradesh, India. In: Sinha, A.K. (Ed), Contemp. Geosc. Res. Himalaya, 1, Bishen Singh Mahendra Pal, Dehradun, pp. 31–48.Google Scholar
  42. Walker, A., McCulloh, T., Peterson, N. and Stewart, R. (1983) Discrepancies between anomalously low reflectance of vitrinite and other maturation indicators from Upper Miocene oil source rocks, Los Angeles Basin, California (Abst.). AAPG Bull., v.67, p.565.Google Scholar
  43. Wilkins, R.W.T. and George, S.C. (2002) Coal as a source rock for oil: a review. International Journal of Coal Geology, v. 50, pp.317–361.CrossRefGoogle Scholar
  44. Wright, M.C, Court, R. W., Kafantaris, F.C.A., Spathopoulos, F., Sephton, M.A. (2015) A new rapid method for shale oil and shale gas assessment. Fuel, v.153, pp.231–239.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2018

Authors and Affiliations

  • Bindhyachal Pandey
    • 1
  • Deo Brat Pathak
    • 1
  • Neeraj Mathur
    • 3
  • Anand K. Jaitly
    • 1
  • Alok K. Singh
    • 4
  • Prakash K. Singh
    • 2
    Email author
  1. 1.Stratigraphy and Invertebrate Paleontology LabBanaras Hindu UniversityVaranasiIndia
  2. 2.Coal & Organic Petrology Lab., Centre of Advanced Study in GeologyBanaras Hindu UniversityVaranasiIndia
  3. 3.Centre of Excellence for Energy StudiesOil India LimitedGuwahatiIndia
  4. 4.Rajiv Gandhi Institute of Petroleum TechnologyRae BareliIndia

Personalised recommendations