Advertisement

An Improvement of Third Order WENO Scheme for Convergence Rate at Critical Points with New Non-linear Weights

  • Anurag Kumar
  • Bhavneet KaurEmail author
Original Research
  • 12 Downloads

Abstract

In this paper, we construct and implement a new improvement of third order weighted essentially non-oscillatory (WENO) scheme in the finite difference framework for hyperbolic conservation laws. In our approach, a modification in the global smoothness measurement is reported by applying all three points on global stencil \((i-1,i,i+1)\) which is used for convergence of non-linear weights towards the optimal weights at critical points and achieves the desired order of accuracy for third order WENO scheme. We use the third order accurate total variation diminishing (TVD) Runge-Kutta time stepping method. The major advantage of the proposed scheme is its better numerical accuracy in smooth regions. The computational performance of the proposed WENO scheme with this global smoothness measurement is verified in several benchmark one- and two-dimensional test cases for scalar and vector hyperbolic equations. Extensive computational results confirm that the new proposed scheme achieves better performance as compared with WENO-JS3, WENO-Z3 and WENO-F3 schemes.

Keywords

Smoothness measurement WENO Critical points Sufficient condition Convergence analysis Accuracy 

Notes

Acknowledgements

The authors are thankful to Center for Fundamental Research in Space Dynamics and Celestial Mechanics (CFRSC), New Delhi, Delhi, India for providing research facilities. We also express gratitude to CSIR, Govt. of India for the grant reference no. 09/045(1438)/2016-EMR-I.

References

  1. 1.
    Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted eno schemes. J. Comput. Phys. 126(1), 202–228 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49(3), 357–393 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Harten, A.: On a class of high resolution total-variation-stable finite-difference schemes. SIAM J. Numer. Anal. 21(1), 1–23 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Harten, A., Osher, S., Engquist, B., Chakravarthy, S.R.: Some results on uniformly high-order accurate essentially nonoscillatory schemes. Appl. Numer. Math. 2(3–5), 347–377 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Harten, A., Osher, S.: Uniformly high-order accurate nonoscillatory schemes. i. SIAM J. Numer. Anal. 24(2), 279–309 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160(2), 405–452 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207(2), 542–567 (2005)zbMATHCrossRefGoogle Scholar
  9. 9.
    Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Yamaleev, N.K., Carpenter, M.H.: Third-order energy stable weno scheme. J. Comput. Phys. 228(8), 3025–3047 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory weno-z schemes for hyperbolic conservation laws. J. Comput. Phys. 230(5), 1766–1792 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Don, W.-S., Borges, R.: Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. J. Comput. Phys. 250, 347–372 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Xiaoshuai, W., Yuxin, Z.: A high-resolution hybrid scheme for hyperbolic conservation laws. Int. J. Numer. Methods Fluids 78(3), 162–187 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wu, X., Liang, J., Zhao, Y.: A new smoothness indicator for third-order weno scheme. Int. J. Numer. Methods Fluids 81(7), 451–459 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Balsara, D.S., Garain, S., Shu, C.-W.: An efficient class of weno schemes with adaptive order. J. Comput. Phys. 326, 780–804 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Zhu, J., Qiu, J.: A new fifth order finite difference weno scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110–121 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kumar, R., Chandrashekar, P.: Simple smoothness indicator and multi-level adaptive order WENO scheme for hyperbolic conservation laws. J. Comput. Phys. 375, 1059–1090 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Kumar, R., Chandrashekar, P.: Efficient seventh order WENO schemes of adaptive order for hyperbolic conservation laws. Comput. Fluids. (2019).  https://doi.org/10.1016/j.compfluid.2019.06.003 MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Ha, Y., Kim, C.H., Lee, Y.J., Yoon, J.: An improved weighted essentially non-oscillatory scheme with a new smoothness indicator. J. Comput. Phys. 232(1), 68–86 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Fan, P., Shen, Y., Tian, B., Yang, C.: A new smoothness indicator for improving the weighted essentially non-oscillatory scheme. J. Comput. Phys. 269, 329–354 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Acker, F., Borges, R.R., Costa, B.: An improved WENO-z scheme. J. Comput. Phys. 313, 726–753 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Xu, W., Wu, W.: Improvement of third-order WENO-Z scheme at critical points. Comput. Math. Appl. 75(9), 3431–3452 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Xu, W., Wu, W.: An improved third-order weighted essentially non-oscillatory scheme achieving optimal order near critical points. Comput. Fluids 162, 113–125 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Gande, N.R., Rathod, Y., Rathan, S.: Third-order weno scheme with a new smoothness indicator. Int. J. Numer. Methods Fluids 85(2), 90–112 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zalesak, S.T.: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31(3), 335–362 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7(1), 159–193 (1954)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Lax, P.D., Liu, X.-D.: Solution of two-dimensional riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19(2), 319–340 (1998)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Foundation for Scientific Research and Technological Innovation 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of DelhiDelhiIndia
  2. 2.Department of Mathematics, Lady Shri Ram College for WomenUniversity of DelhiDelhiIndia

Personalised recommendations