Advertisement

Existence of Solutions for a Nonlocal Boundary Value Problem at Resonance on the Half-Line

  • S. Djafri
  • T. MoussaouiEmail author
  • D. O’Regan
Original Research
  • 1 Downloads

Abstract

In this paper we are interested in the existence of solutions for the following boundary value problem at resonance on the half-line
where \(f:\mathbb {R}^{+}\times \mathbb {R}^{2}\rightarrow \mathbb {R}\) is q-Carathéodory, \( g:\mathbb {R}^{+}\rightarrow \mathbb {R}^{+} \) is a nondecreasing function with \(g(0)=0\) under the resonance condition \(g(\infty )= 1\). The coincidence degree theory of Mawhin [17] is used to establish the existence of at least one solution for the posed problem.

Keywords

Coincidence degree Boundary value problem Resonance Unbounded interval 

Mathematics Subject Classification

34B10 34B15 34B45 70K30 

Notes

References

  1. 1.
    Agarwal, R.P., O’Regan, D.: Infinite Interval Problems for Differential, Difference and Integral Equations. Kluwer Academic Publishers, Dordrecht (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Agarwal, R.P., O’Regan, D.: Continuous and discrete boundary value problems on the infinite interval. Existence theory. Mathematika 48, 273–292 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Avramescu, C., Vladimirescu, C.: Limits of solutions of a perturbed linear differential equation. Electron. J. Qual. Theory Differ. Equ. 3, 1–11 (2002)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bai, C., Fang, J.: On positive solutions of boundary value problems for second-order functional differential equations on infinite intervals. J. Math. Anal. Appl. 282, 711–731 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cont, R., Tankov, P., Voltchkova, E.: Option pricing models with jumps: integro-differential equations and inverse problems. In: Neittaanmäki, P., Rossi, T., Korotov, S., Oñate, E., Périaux, J., Knörzer, D. (eds.) European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004. Jyväskylä, 24–28 July 2004 (2004)Google Scholar
  6. 6.
    Eloe, P.W., Grimm, L.J., Mashburn, J.D.: A boundary value problem on an unbounded domain. Differential Equations Dynam. Syst. 8(2), 125–140 (2000)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Frioui, A., Guezane-Lakoud, A., Khaldi, R.: Higher order boundary value problems at resonace on an unbounded interval. Electron. J. Differential Equations 29, 1–10 (2016)zbMATHGoogle Scholar
  8. 8.
    Karakostas, G.L., Tsamatos, P.C.H.: Sufficient conditions for the existence of nonnegative solutions of a nonlocal boundary value problem. Appl. Math Lett. 15(4), 401–407 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kosmatov, N.: Multi-point boundary value problems on an unbounded domain at resonance. Nonlinear Anal. 68(8), 2158–2171 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jiang, W., Kosmatov, N.: Resonant functional problems of fractional order. Chaos Solitons Fract 91, 573–579 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jiang, W., Kosmatov, N.: Second-order functional problems with a resonance of dimension one. Differ. Equ. Appl. 3, 349–365 (2016)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Jiang, W., Kosmatov, N.: Solvability of a third-order differential equation with functional boundary conditions at resonance. Bound Value Prob 1, 81 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lian, H., Pang, H., Ge, W.: Solvability for second-order three-point boundary value problems at resonnace on a half-line. Appl. Math. Comput. 337, 1171–1181 (2008)zbMATHGoogle Scholar
  14. 14.
    Lin, X.: Existence of solution to a nonlocal boundary value problem with nonlinear growth. Bound. Value Prob. 2011, 416416.  https://doi.org/10.1155/2011/416416
  15. 15.
    Ma, R.: Existence of positive solutions for second-order boundary value problems on infinity intervals. Appl. Math. Lett. 16, 33–39 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mavridis, K.G., Tsamatos, P.CH.: Positive solutions for first order nonlinear functional boundary value problems on infinite intervals. Electron. J. Qual. Theory Differ. Equ. 1–18 (2004)Google Scholar
  17. 17.
    Mawhin, J.: Topological degree and boundary value problems for nonlinear differential equations in topological methods for ordinary differential equations. In: Fitzpertrick, P.M., Martelli, M., Mawhin, J., Nussbaum, R. (eds.) Lecture Notes in Math, vol. 1537, pp. 74–142. Springer, New York (1991)Google Scholar
  18. 18.
    Mawhin, J.: Topological degree methods in nonlinear boundary-value problems. CBMS Regional Conference Series in Mathematics, American Mathematical Society, vol. 40 (1979)Google Scholar
  19. 19.
    Natalini, R., Briani, M., Chioma, C.L.: Finite differences schemes for integro-differential equations in financial mathematics. IAC-CNR and University (2003)Google Scholar
  20. 20.
    Tariboon, J., Sudsutad, W.: Positive solutions of a nonlinear m-point integral boundary value problem. Appl. Math. Sci. 6(15), 711–729 (2012)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Yan, B.: Multiple unbounded solutions of boundary value problems for second-order differential equations on half-line. Nonlinear Anal. 51, 1031–1044 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zhang, X., Feng, M., Ge, W.: Existence result of second-order differential equations with integral boundary conditions at resonance. J. Math. Anal. Appl. 353(1), 311–319 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Foundation for Scientific Research and Technological Innovation 2019

Authors and Affiliations

  1. 1.University of Sciences and Technology Houari BoumedienneBab EzzouarAlgeria
  2. 2.Laboratory of Fixed Point Theory and ApplicationsÉcole Normale SupérieureKoubaAlgeria
  3. 3.School of Mathematics, Statistics and Applied MathematicsNational University of IrelandGalwayIreland

Personalised recommendations