Advertisement

On a Class of Nonlinear Elliptic Singular Perturbations Problems

  • Chokri OgabiEmail author
Original Research
  • 10 Downloads

Abstract

In this note we study the asymptotic behavior of the solution of a singularly perturbed nonlinear Hammerstein elliptic problem in cylindrical domain. The limit problem is given and strong convergences in a pseudo Sobolev space are proved.

Keywords

Hammerstein operator Singular perturbations Integro-differential equation Asymptotic behavior Elliptic problems 

Notes

References

  1. 1.
    Coclite, G.M., Coclite, M.M.: Elliptic perturbations for Hammerstein equations with singular nonlinear term. Electron. J. Differ. Equ. 2006(104), 1–23 (2006)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Chipot, M., Guesmia, S.: On the asymptotic behaviour of elliptic, anisotropic singular perturbations problems. Commun. Pure Appl. Anal. 8(1), 179–193 (2009)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Chipot, M., Guesmia, S.: On a class of integro-differential problems. Commun. Pure Appl. Anal. 9(5), 1249–1262 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chipot, M., Guesmia, S., Sengouga, M.: Singular perturbations of some nonlinear problems. J. Math. Sci. 176(6), 828–843 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Das, P., Mehrmann, V.: Numerical solution of singularly perturbed parabolic convection–diffusion–reaction problems with two small parameters. BIT Numer. Math. 56, 51–76 (2016)CrossRefzbMATHGoogle Scholar
  6. 6.
    Das, P., Natesan, S.: Numerical solution of a system of singularly perturbed convection–diffusion boundary-value problems using mesh equidistribution technique. Aust. J. Math. Anal. Appl. 10(1), 1–17 (2013)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains, vol. 69. SIAM, Philadelphia (2011)CrossRefzbMATHGoogle Scholar
  8. 8.
    Ogabi, C.: On the \(L^p\)-theory of anisotropic singular perturbations of elliptic problems. Commun. Pure Appl. Anal. 15(4), 1157–1178 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Rudin, W.: Functional Analysis. McGraw-Hill Science, New York (1991). ISBN 0070542368zbMATHGoogle Scholar

Copyright information

© Foundation for Scientific Research and Technological Innovation 2019

Authors and Affiliations

  1. 1.Académie de GrenobleGrenobleFrance

Personalised recommendations