Advertisement

Lie Group Analysis of Nanofluid Slip Flow with Stefan Blowing Effect via Modified Buongiorno’s Model: Entropy Generation Analysis

  • Puneet Rana
  • Nisha Shukla
  • O. Anwar Bég
  • Anuj BhardwajEmail author
Original Research
  • 11 Downloads

Abstract

This article presents a detailed theoretical and computational analysis of alumina and titania-water nanofluid flow from a horizontal stretching sheet. At the boundary of the sheet (wall), velocity slip, thermal slip and Stefan blowing effects are considered. The Pak-Cho viscosity and thermal conductivity model is employed together with the non-homogeneous Buongiorno nanofluid model. The equations for mass, momentum, energy and nanoparticle species conservation are transformed via Lie-group transformations into a dimensionless system. The partial differential boundary value problem is therefore rendered into nonlinear ordinary differential form. With appropriate boundary conditions, the emerging normalized equations are solved with the semi-numerical homotopy analysis method (HAM). To consider entropy generation affects a second law thermodynamic analysis is also carried out. The impact of some physical parameters on the skin friction, Nusselt number, velocity, temperature and entropy generation number (EGM) are represented graphically. This analysis shows that diffusion parameter is a key factor to retards the friction and rate of heat transfer at the surface. Further, temperature of fluid decreases for the higher value of thermal slip parameter. In addition, EGM enhances with nanoparticles ambient concentration and Reynolds number. A numerical validation of HAM results is also included. The computations are relevant to thermodynamic optimization of nano-material processing operations.

Keywords

Nanofluid HAM Entropy generation analysis Stefan blowing effect Slip flow 

List of symbols

C

Nanoparticles concentration (–)

DB

Brownian diffusion (m2/s)

DT

Thermophoresis diffusion (m2/s)

D

Ratio of thermophoresis and Brownian motion parameter

Ec

Eckert number (–)

F

Dimensionless stream function (–)

H

Enthalpy (J)

K

Thermal conductivity [W/(mK)]

Nur

Nusselt number (–)

N1

Velocity slip parameter (m)

N2

Thermal slip parameter (m)

Pr

Prandtl number (–)

q

Embedding parameter (–)

R

Gas constant [J/(molK)]

Re

Reynolds number (–)

\( \phi \)

Dimensionless concentration (–)

Sg

Volumetric rate of entropy generation [J/(Km3 s)]

Sc

Characteristic entropy [J/(Km3 s)]

Sc

Schmidt number (–)

T

Temperature (K)

u

Velocity (m/s) along x-axis

v

Velocity (m/s) along y-axis

Greek Symbol

\( \rho \)

Density (kg/m3)

\( \mu \)

Dynamic viscosity (Ns/m2)

\( \phi \)

Concentration (–)

\( \psi \)

Stream function (m2/s)

\( \upsilon \)

Kinematic viscosity (m2/s)

\( \delta \)

Thermal slip parameter (–)

\( \rho c \)

Heat capacity [J/(Km3)]

\( \theta \)

Dimensionless temperature (–)

\( \chi \)

Diffusive constant (–)

\( \lambda_{1} \)

Dimensionless velocity slip parameter

\( \lambda_{2} \)

Dimensionless thermal slip parameter

\( \eta \)

Similarity variable (–)

Subscript

\( \infty \)

Ambient condition

\( w \)

Condition on surface

P

Nanoparticles

nf

Nanofluid

f

Fluid

Notes

References

  1. 1.
    Crane, L.J.: Flow past a stretching plate. Z. Für Angew. Math. Phys. ZAMP 21(4), 645–647 (1970)CrossRefGoogle Scholar
  2. 2.
    Choi, S.U.S., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab., IL, ANL/MSD/CP-84938; CONF-951135-29 (1995)Google Scholar
  3. 3.
    Eastman, J.A., Choi, U.S., Li, S., Thompson, L.J., Lee, S.: Enhanced thermal conductivity through the development of nanofluids, vol. 457. Fall Meet. Mater. Res. Soc. MRS, Boston (1996)Google Scholar
  4. 4.
    Aybar, H.Ş., Sharifpur, M., Azizian, M.R., Mehrabi, M., Meyer, J.P.: A review of thermal conductivity models for nanofluids. Heat Transf. Eng. 36(13), 1085–1110 (2015)CrossRefGoogle Scholar
  5. 5.
    Rana, P., Shukla, N., Gupta, Y., Pop, I.: Analytical prediction of multiple solutions for MHD Jeffery-Hamel flow and heat transfer utilizing KKL nanofluid model. Phys. Lett. A 383, 176–185 (2018)CrossRefGoogle Scholar
  6. 6.
    Sheikholeslami, M., Rokni, H.B.: CVFEM for effect of Lorentz forces on nanofluid flow in a porous complex shaped enclosure by means of non-equilibrium model. J. Mol. Liq. 254, 446–462 (2018)CrossRefGoogle Scholar
  7. 7.
    Sheikholeslami, M., Darzi, M., Sadoughi, M.K.: Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. Int. J. Heat Mass Transf. 122, 643–650 (2018)CrossRefGoogle Scholar
  8. 8.
    Sheikholeslami, M.: Numerical investigation for CuO-H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. J. Mol. Liq. 249, 739–746 (2018)CrossRefGoogle Scholar
  9. 9.
    Sheikholeslami, M., Rokni, H.B.: Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int. J. Heat Mass Transf. 118, 823–831 (2018)CrossRefGoogle Scholar
  10. 10.
    Buongiorno, J.: Convective transport in nanofluids. ASME J. Heat Transf. 128(3), 240–250 (2006)CrossRefGoogle Scholar
  11. 11.
    Dhanai, R., Rana, P., Kumar, L.: Critical values in slip flow and heat transfer analysis of non-Newtonian nanofluid utilizing heat source/sink and variable magnetic field: multiple solutions. J. Taiwan Inst. Chem. Eng. 58, 155–164 (2016)CrossRefGoogle Scholar
  12. 12.
    Dhanai, R., Rana, P., Kumar, L.: MHD mixed convection nanofluid flow and heat transfer over an inclined cylinder due to velocity and thermal slip effects: Buongiorno’s model. Powder Technol. 288, 140–150 (2016)CrossRefGoogle Scholar
  13. 13.
    Kuznetsov, A.V., Nield, D.A.: Natural convective boundary-layer flow of a nanofluid past a vertical plate: a revised model. Int. J. Therm. Sci. 77, 126–129 (2014)CrossRefGoogle Scholar
  14. 14.
    Rana, P., Bhargava, R., Bég, O.A.: Numerical solution for mixed convection boundary layer flow of a nanofluid along an inclined plate embedded in a porous medium. Comput. Math. Appl. 64(9), 2816–2832 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rana, P., Bhargava, R., Bég, O.A.: Finite element modeling of conjugate mixed convection flow of Al2O3–water nanofluid from an inclined slender hollow cylinder. Phys. Scr. 87(5), 1–15 (2013)CrossRefGoogle Scholar
  16. 16.
    Rashidi, M.M., Freidoonimehr, N., Hosseini, A., Bég, O.A., Hung, T.-K.: Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration. Meccanica 49(2), 469–482 (2014)CrossRefzbMATHGoogle Scholar
  17. 17.
    Yang, C., Li, W., Nakayama, A.: Convective heat transfer of nanofluids in a concentric annulus. Int. J. Therm. Sci. 71, 249–257 (2013)CrossRefGoogle Scholar
  18. 18.
    Malvandi, A., Moshizi, S.A., Soltani, E.G., Ganji, D.D.: Modified Buongiorno’s model for fully developed mixed convection flow of nanofluids in a vertical annular pipe. Comput. Fluids 89, 124–132 (2014)CrossRefGoogle Scholar
  19. 19.
    Rana, P., Dhanai, R., Kumar, L.: MHD slip flow and heat transfer of Al2O3–water nanofluid over a horizontal shrinking cylinder using Buongiorno’s model: effect of nanolayer and nanoparticle diameter. Adv. Powder Technol. 28(7), 1727–1738 (2017)CrossRefGoogle Scholar
  20. 20.
    Yoshimura, A., Prud’homme, R.K.: Wall slip corrections for Couette and parallel disk viscometers. J. Rheol. 32(1), 53–67 (1988)CrossRefGoogle Scholar
  21. 21.
    Klein, S., Nellis, G.: Heat Transfer. Cambridge University Press, Cambridge (2008)zbMATHGoogle Scholar
  22. 22.
    Fang, T., Jing, W.: Flow, heat and species transfer over a stretching plate considering coupled Stefan blowing effects from species transfer. Commun. Nonlinear Sci. Numer. Simul. 19(9), 3086–3097 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Uddin, M.J., Kabir, M.N., Bég, O.A.: Computational investigation of Stefan blowing and multiple-slip effects on buoyancy-driven bioconvection nanofluid flow with microorganisms. Int. J. Heat Mass Transf. 95, 116–130 (2016)CrossRefGoogle Scholar
  24. 24.
    Latiff, N.A., Uddin, M.J., Ismail, A.I.M.: Stefan blowing effect on bioconvective flow of nanofluid over a solid rotating stretchable disk. Propuls. Power Res. 5(4), 267–278 (2016)CrossRefGoogle Scholar
  25. 25.
    Rana, P., Shukla, N., Beg, O.A., Kadir, A., Singh, B.: Unsteady electromagnetic radiative nanofluid stagnation-point flow from a stretching sheet with chemically reactive nanoparticles, Stefan blowing effect and entropy generation. Proc. Inst. Mech. Eng. Part N J. Nanomater. Nanoeng. Nanosyst. 232, 69–82 (2018)Google Scholar
  26. 26.
    Bejan, A.: Method of entropy generation minimization, or modeling and optimization based on combined heat transfer and thermodynamics. Rev. Générale Therm. 35(418), 637–646 (1996)CrossRefGoogle Scholar
  27. 27.
    Abolbashari, M.H., Freidoonimehr, N., Nazari, F., Rashidi, M.M.: Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid. Powder Technol. 267, 256–267 (2014)CrossRefGoogle Scholar
  28. 28.
    Butt, A.S., Munawar, S., Ali, A., Mehmood, A.: Entropy generation in the Blasius flow under thermal radiation. Phys. Scr. 85(3), 035008 (2012)CrossRefzbMATHGoogle Scholar
  29. 29.
    Qing, J., Bhatti, M., Abbas, M., Rashidi, M., Ali, M.: Entropy generation on MHD Casson nanofluid flow over a porous stretching/shrinking surface. Entropy 18(4), 1–14 (2016)CrossRefGoogle Scholar
  30. 30.
    Bhatti, M., Abbas, T., Rashidi, M., Ali, M.: Numerical simulation of entropy generation with thermal radiation on MHD Carreau nanofluid towards a shrinking sheet. Entropy 18(6), 200 (2016)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Aïboud, S., Saouli, S.: Second law analysis of viscoelastic fluid over a stretching sheet subject to a transverse magnetic field with heat and mass transfer. Entropy 12(8), 1867–1884 (2010)CrossRefGoogle Scholar
  32. 32.
    Bhatti, M., et al.: Entropy generation on MHD Eyring–Powell nanofluid through a permeable stretching surface. Entropy 18(6), 224 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Liao, S.J.: Homotopy Analysis Method in Nonlinear Differential Equations. Higher Education Press, Beijing (2012)CrossRefzbMATHGoogle Scholar
  34. 34.
    Mabood, F., Khan, W.A., Ismail, A.I.M.: MHD flow over exponential radiating stretching sheet using homotopy analysis method. J. King Saud Univ. Eng. Sci. 29(1), 68–74 (2017)Google Scholar
  35. 35.
    Abdallah, I.A.: Homotopy analytical solution of MHD fluid flow and heat transfer problem. Appl. Math. Inf. Sci. 3(2), 223–233 (2009)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Uddin, M.J., Alginahi, Y., Bég, O.A., Kabir, M.N.: Numerical solutions for gyrotactic bioconvection in nanofluid-saturated porous media with Stefan blowing and multiple slip effects. Comput. Math. Appl. 72(10), 2562–2581 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Pak, B.C., Cho, Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 11(2), 151–170 (1998)CrossRefGoogle Scholar
  38. 38.
    Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman and Hall/CRC Press, London/Boca Ratton (2003)CrossRefGoogle Scholar

Copyright information

© Foundation for Scientific Research and Technological Innovation 2019

Authors and Affiliations

  1. 1.Department of MathematicsJaypee Institute of Information TechnologyNoidaIndia
  2. 2.Fluid Mechanics and Propulsion, Aeronautical and Mechanical Engineering, School of Computing, Science and EngineeringUniversity of SalfordSalfordUK

Personalised recommendations