Advertisement

Differential Equations and Dynamical Systems

, Volume 27, Issue 4, pp 553–559 | Cite as

Some Ambarzumyan Type Theorems for Bessel Operator on a Finite Interval

  • Emrah YilmazEmail author
  • Hikmet Koyunbakan
Original Research

Abstract

In this study, we deal with an inverse problem for Bessel operator on a finite interval. We present some results of the associated with Ambarzumyan’s theorem by using spectrum and nodal points (zeros of eigenfunction).

Keywords

Spectrum Ambarzumyan theorem Bessel operator  Nodal points 

Mathematics Subject Classification

34A55 34L05 34L20 

References

  1. 1.
    Carlson, R.A.: A Borg–Levinson theorem for Bessel operator. Pac. J. Math. 177(1), 1–26 (1997)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Koyunbakan, H.: Inverse nodal problem for singular differential operators. J. Inverse Ill-Posed Probl. 13(5), 435–440 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Panakhov, E.S., Koyunbakan, H.: Inverse problem for singular Sturm–Liouville operator. In: Proceeding of IMM of NAS of Azerbaijan, pp. 113–126 (2003)Google Scholar
  4. 4.
    Topsakal, N., Amirov, R.: Inverse problem for Sturm–Liouville operators with Coulomb potential which have discontinuity conditions inside an interval. Math. Phys. Anal. Geom. 13(1), 29–46 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Stashevskaya, V.V.: On inverse problems of spectral analysis for a certain class of differential equations. Dokl. Akad. Nauk SSSR 93, 409–412 (1953)MathSciNetGoogle Scholar
  6. 6.
    Sat, M., Panakhov, E.S.: A uniqueness theorem for Bessel operator from interior spectral data. Abstr. Appl. Anal. 2013, 713654 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ambarzumyan, V.A.: Über eine frage der eigenwerttheorie. Z. Phys. 53, 690–695 (1929)CrossRefGoogle Scholar
  8. 8.
    Chakravarty, N.K., Acharyya, S.K.: On an extension of the theorem of V. A. Ambarzumyan. In: Proceeding of the Royal Society of Edinburg, vol. 110A, pp. 79–84 (1988)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chern, H.H., Shen, C.L.: On the \(n\)-dimensional Ambarzumyan’s theorem. Inverse Probl. 13, 15–18 (1997)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chern, H.H., Law, C.K., Wang, H.J.: Extension of Ambarzumyan’s theorem to general boundary conditions. J. Math. Anal. Appl. 309, 764–768 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Harrell, E.M.: On the extension of Ambarzumyan’s inverse spectral theorem to compact symmetric spaces. Am. J. Math. 109, 787–795 (1987)CrossRefGoogle Scholar
  12. 12.
    Horvath, M.: On a theorem of Ambarzumyan. Proc. R. Soc. Edinb. 131A, 899–907 (2001)CrossRefGoogle Scholar
  13. 13.
    Shen, C.L.: On some inverse spectral problems related to the Ambarzumyan problem and the dual string of the string equation. Inverse Probl. 23, 2417–2436 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Yang, C.F., Yang, X.P.: Ambarzumyan’s theorem with eigenparameter in the boundary conditions. Acta Math. Sci. 31(4), 1561–1568 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Yang, C.F., Yang, X.P.: Some Ambarzumyan type theorems for Dirac operators. Inverse Probl. 25(9), 095012 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Yang, C.F., Huang, Z.Y., Yang, X.P.: Ambarzumyan’s theorems for vectorial Sturm–Liouville systems with coupled boundary conditions. Taiwan. J. Math. 14(4), 1429–1437 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    McLaughlin, J.R.: Inverse spectral theory using nodal points as data—a uniqueness result. J. Differ. Equ. 73, 354–362 (1988)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Shen, C.L.: On the nodal sets of the eigenfunctions of the string equation. SIAM J. Math. Anal. 19(6), 1419–1424 (1988)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hald, O.H., McLaughlin, J.R.: Solutions of inverse nodal problems. Inverse Probl. 5, 307–347 (1989)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Browne, P.J., Sleeman, B.D.: Inverse nodal problems for Sturm–Liouville equations with eigenparameter depend boundary conditions. Inverse Probl. 12, 377–381 (1996)CrossRefGoogle Scholar
  21. 21.
    Law, C.K., Shen, C.L., Yang, C.F.: The inverse nodal problem on the smoothness of the potential function. Inverse Probl. 15, 253–263 (1999). [Erratum 17, 361–364 (2001)]MathSciNetCrossRefGoogle Scholar
  22. 22.
    Buterin, S.A., Shieh, C.T.: Inverse nodal problem for differential pencils. Appl. Math. Lett. 22(8), 1240–1247 (2009)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Stashevskaya, V.V.: On inverse problem spectral analysis for differential operator having singularity at zero. Zapiski. Math. Otdelenie Fiz. Math. Fak. HDU Harkov Math. Obsh. XXV(4), 49–86 (1957)Google Scholar
  24. 24.
    Levitan, B.M.: Inverse Sturm–Liouville Problems. Netherland VNU Science Press, Utrecht (1987)CrossRefGoogle Scholar
  25. 25.
    Freiling, G., Yurko, V.A.: Inverse Sturm–Liouville Problems and Their Applications. NOVA Science Publishers, New York (2001)zbMATHGoogle Scholar
  26. 26.
    Koyunbakan, H., Panakhov, E.S.: Solution of a discontinuous inverse nodal problem on a finite interval. Math. Comput. Model. 44, 204–209 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Foundation for Scientific Research and Technological Innovation 2016

Authors and Affiliations

  1. 1.Department of MathematicsFirat UniversityElazigTurkey

Personalised recommendations