Advertisement

Cathodoluminescence Microscopy of Zircon in HP- and UHP-Metamorphic Rocks: A Fundamental Technique for Assessing the Problem of Inclusions versus Pseudo-Inclusions

  • Hans-Peter SchertlEmail author
  • Andreas Hertwig
  • Walter V. Maresch
Article
  • 16 Downloads

Abstract

This paper shows how a faulty approach to the study of mineral inclusions in zircon can lead to misleading interpretations of the geological context. We present and discuss two well-documented examples. Zircon grains separated from HP metamorphic jadeitite of the Rio San Juan Complex, Dominican Republic, and from UHP pyrope quartzite of the Dora Maira Massif, northern Italy, were studied using cathodoluminescence (CL) techniques, in combination with mineral inclusion and age data. In general, zircon from both localities shows inherited magmatic core domains with oscillatory zoning and metamorphic rims. The magmatic cores of zircon from the jadeitite yield ages of 115–117 Ma and host jadeite and omphacite which are of metamorphic origin and formed at about 78 Ma. Zircon from lawsonite blueschist, representing the country rock of the jadeitite, contains domains with oscillatory zoning that are nearly identical in age to the zircon cores from the adjacent jadeitite, and also contains younger metamorphic minerals such as lawsonite, albite, phengite (Si3.68), chlorite, and omphacite. Similar observations were made on the magmatic cores of zircon from the pyrope quartzite. These are about 275 Ma in age and host pyrope, phengite (Si3.55), talc, and kyanite, all of which formed during UHP metamorphism at about 35 Ma. Zircon from the biotite-phengite-gneiss country rock (metagranite) shows oscillatory zoning and yields ages that are identical to those of the magmatic cores of zircon from pyrope quartzite, which thus reflect granitic intrusion ages. The country-rock zircon also encloses metamorphic minerals with ages of about 35 Ma. Such minerals are, for example, garnet and phengite, as well as a polymineralic assemblage of clinopyroxene+garnet+phengite+quartz, that point to formation at UHP metamorphic conditions around 40 kbar/750 °C. Based on these examples we suggest an effective approach centered on key evidence from CL studies to show that magmatic domains of zircon may actually contain pseudo-inclusions which were not entrapped during an early stage of formation, but were instead introduced during later metamorphic or metasomatic events along microcracks representing pathways for fluid influx. Cathodoluminescence microscopy is thus an excellent tool for avoiding such pitfalls by allowing distinction between true inclusions and pseudo-inclusions in zircon.

Key Words

zircon cathodoluminescence inclusion pseudo-inclusion jadeitite pyrope-quarzite whiteschist 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The current study was financially supported by the German Research Foundation (No. SCHE-517/10-1). We are grateful to two anonymous reviewers who helped to improve our paper with their comments. The final publication is available at Springer via  https://doi.org/10.1007/s12583-019-1246-5.

References Cited

  1. Ames, L., Tilton, G. R., Zhou, G. Z., 1993. Timing of Collision of the Sino-Korean and Yangtse Cratons: U-Pb Zircon Dating of Coesite-Bearing Eclogites. Geology, 21(4): 339–342.  https://doi.org/10.1130/0091-7613(1993)021<0339:tocots>2.3.co;2 CrossRefGoogle Scholar
  2. Baxter, E. F., Scherer, E. E., 2013. Garnet Geochronology: Timekeeper of Tectonometamorphic Processes. Elements, 9(6): 433–438. https://doi.org/10.2113/gselements.9.6.433 CrossRefGoogle Scholar
  3. Burchard, M., 1999. Experimentelle Bestimmung von Phasenbeziehungen der granitischen Nebengesteine der Dora-Maira-Pyrop-Quarzite bei 15–45 kbar, Temperaturen von 675–1 000 ºC und Variablen H2O-Gehalten: [Dissertation]. Ruhr-Universität, Bochum. 434 (in German)Google Scholar
  4. Chen, Y. X., Zhou, K., Zheng, Y. F., et al., 2017. Zircon Geochemical Constraints on the Protolith Nature and Metasomatic Process of the Mg-Rich Whiteschist from the Western Alps. Chemical Geology, 467: 177–195. https://doi.org/10.1016/j.chemgeo.2017.08.013 CrossRefGoogle Scholar
  5. Chopin, C., 1984. Coesite and Pure Pyrope in High-Grade Blueschists of the Western Alps: A First Record and some Consequences. Contributions to Mineralogy and Petrology, 86(2): 107–118. https://doi.org/10.1007/bf00381838 CrossRefGoogle Scholar
  6. Chopin, C., Henry, C., Michard, A., 1991. Geology and Petrology of the Coesite-Bearing Terrain, Dora Maira Massif, Western Alps. European Journal of Mineralogy, 3(2): 263–292. https://doi.org/10.1127/ejm/3/2/0263 CrossRefGoogle Scholar
  7. Compagnoni, R., Hirajima, T., Turello, R., et al., 1994. The Brossasco-Isasca unit of the Dora-Maira Massif. In: Compagnoni, R., Messiga, B., eds., High Pressure Metamorphism in the Western Alps, Guide-Book to the Field Excursion B1 of the 16th General Meeting of the IMA. September 10–15, Pisa. 87–105Google Scholar
  8. Compagnoni, R., Rolfo, F., Castelli, D., 2012. Jadeitite from the Monviso Meta-Ophiolite, Western Alps: Occurrence and Genesis. European Journal of Mineralogy, 24(2): 333–343. https://doi.org/10.1127/0935-1221/2011/0023-2164 CrossRefGoogle Scholar
  9. Corfu, F., Hanchar, J. M., Hoskin, P. W. O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469–500. https://doi.org/10.2113/0530469 CrossRefGoogle Scholar
  10. Draper, G., Nagle, F., 1991. Geology, Structure and Tectonic Development of the Río San Juan Complex, Northern Dominican Republic. In: Mann, P., Draper, G., Lewis, J., eds., Geologic and Tectonic Development of the North America-Caribbean Plate Boundary Zone in Hispaniola. Geological Society of America, Special Papers, 262: 77–95CrossRefGoogle Scholar
  11. Duchêne, S., Blichert-Toft, J., Luais, B., et al., 1997. The Lu-Hf Dating of Garnets and the Ages of the Alpine High-Pressure Metamorphism. Nature, 387(6633): 586–589. https://doi.org/10.1038/42446 CrossRefGoogle Scholar
  12. Escuder-Viruete, J., Pérez-Estaún, A., Booth-Rea, G., et al., 2011. Tectonometamorphic Evolution of the Samaná Complex, Northern Hispaniola: Implications for the Burial and Exhumation of High-Pressure Rocks in a Collisional Accretionary Wedge. Lithos, 125(1/2): 190–210. https://doi.org/10.1016/j.lithos.2011.02.006 CrossRefGoogle Scholar
  13. Ferrando, S., Frezzotti, M. L., Petrelli, M., et al., 2009. Metasomatism of Continental Crust during Subduction: The UHP Whiteschists from the Southern Dora-Maira Massif (Italian Western Alps). Journal of Metamorphic Geology, 27(9): 739–756. https://doi.org/10.1111/j.1525-1314.2009.00837.x CrossRefGoogle Scholar
  14. Fu, B., Valley, J. W., Kita, N. T., et al., 2010. Multiple Origins of Zircons in Jadeitite. Contributions to Mineralogy and Petrology, 159(6): 769–780. https://doi.org/10.1007/s00410-009-0453-y CrossRefGoogle Scholar
  15. Gauthiez-Putallaz, L., Rubatto, D., Hermann, J., 2016. Dating Prograde Fluid Pulses during Subduction by in situ U-Pb and Oxygen Isotope Analysis. Contributions to Mineralogy and Petrology, 171(2): 1–20. https://doi.org/10.1007/s00410-015-1226-4 CrossRefGoogle Scholar
  16. Gebauer, D., Schertl, H.-P., Brix, M., et al., 1997. 35 Ma Old Ultrahigh-Pressure Metamorphism and Evidence for very Rapid Exhumation in the Dora Maira Massif, Western Alps. Lithos, 41(1/2/3): 5–24. https://doi.org/10.1016/s0024-4937(97)82002-6 CrossRefGoogle Scholar
  17. Gerdes, A., Zeh, A., 2006. Combined U-Pb and Hf Isotope LA-(MC-)ICP-MS Analyses of Detrital Zircons: Comparison with SHRIMP and New Constraints for the Provenance and Age of an Armorican Metasediment in Central Germany. Earth and Planetary Science Letters, 249(1/2): 47–61. https://doi.org/10.1016/j.epsl.2006.06.039 CrossRefGoogle Scholar
  18. Gilotti, J. A., McClelland, W. C., Wooden, J. L., 2014. Zircon Captures Exhumation of an Ultrahigh-Pressure Terrane, North-East Greenland Caledonides. Gondwana Research, 25(1): 235–256. https://doi.org/10.1016/j.gr.2013.03.018 CrossRefGoogle Scholar
  19. Hanchar, J. M., Miller, C. F., 1993. Zircon Zonation Patterns as Revealed by Cathodoluminescence and Backscattered Electron Images: Implications for Interpretation of Complex Crustal Histories. Chemical Geology, 110(1/2/3): 1–13. https://doi.org/10.1016/0009-2541(93)90244-d CrossRefGoogle Scholar
  20. Harlow, G. E., Sorensen, S. S., 2005. Jade (Nephrite and Jadeitite) and Serpentinite: Metasomatic Connections. International Geology Review, 47(2): 113–146. https://doi.org/10.2747/0020-6814.47.2.113 CrossRefGoogle Scholar
  21. Hermann, J., 2003. Experimental Evidence for Diamond-Facies Metamorphism in the Dora-Maira Massif. Lithos, 70(3/4): 163–182. https://doi.org/10.1016/s0024-4937(03)00097-5 CrossRefGoogle Scholar
  22. Hertwig, A., 2014. Genesis of Jadeitites and Their Country Rocks, Río San Juan Complex, Dominican Republic: [Dissertation]. Ruhr-Universität, Bochum. 378 (in German)Google Scholar
  23. Hertwig, A., Maresch, W. V., 2015. Field Guide Volume. XI International Eclogite Conference. Jan. 31–Feb. 7, 2015, Río San Juan, Dominican RepublicGoogle Scholar
  24. Hertwig, A., McClelland, W. C., Kitajima, K., et al., 2016. Inherited Igneous Zircons in Jadeitite Predate High-Pressure Metamorphism and Jadeitite Formation in the Jagua Clara Serpentinite Mélange of the Rio San Juan Complex (Dominican Republic). Contributions to Mineralogy and Petrology, 171(5): 1–26. https://doi.org/10.1007/s00410-016-1256-6 CrossRefGoogle Scholar
  25. Hoskin, P. W. O., Black, L. P., 2002. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423–439. https://doi.org/10.1046/j.1525-1314.2000.00266.x CrossRefGoogle Scholar
  26. Hoskin, P. W. O., Ireland, T. R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7): 627.  https://doi.org/10.1130/0091-7613(2000)28<627:reecoz>2.0.co;2 CrossRefGoogle Scholar
  27. Katayama, I., Zayachkovsky, A. A., Maruyama, S., 2000. Prograde Pressure-Temperature Records from Inclusions in Zircons from Ultrahigh-Pressure-High-Pressure Rocks of the Kokchetav Massif, Northern Kazakhstan. The Island Arc, 9(3): 417–427. https://doi.org/10.1046/j.1440-1738.2000.00286.x CrossRefGoogle Scholar
  28. Krebs, M., Maresch, W. V., Schertl, H.-P., et al., 2008. The Dynamics of Intra-Oceanic Subduction Zones: A Direct Comparison between Fossil Petrological Evidence (Rio San Juan Complex, Dominican Republic) and Numerical Simulation. Lithos, 103(1/2): 106–137. https://doi.org/10.1016/j.lithos.2007.09.003 CrossRefGoogle Scholar
  29. Krebs, M., Schertl, H.-P., Maresch, W. V., et al., 2011. Mass Flow in Serpentinite-Hosted Subduction Channels: P-T-t Path Patterns of Metamorphic Blocks in the Rio San Juan Mélange (Dominican Republic). Journal of Asian Earth Sciences, 42(4): 569–595. https://doi.org/10.1016/j.jseaes.2011.01.011 CrossRefGoogle Scholar
  30. Kröner, A., Jaeckel, P., Williams, I. S., 1994. Pb-Loss Patterns in Zircons from a High-Grade Metamorphic Terrain as Revealed by Different Dating Methods: U-Pb and Pb-Pb Ages for Igneous and Metamorphic Zircons from Northern Sri Lanka. Precambrian Research, 66(1/2/3/4): 151–181. https://doi.org/10.1016/0301-9268(94)90049-3 CrossRefGoogle Scholar
  31. Li, X.-P., Wang, X., Chen, S., et al., 2018. Petrology and Zircon U-Pb Dating of Meta-Calcsilicate from the Jiaobei Terrane in the Jiao-Liao-Ji Belt of the North China Craton. Precambrian Research, 313: 221–241. https://doi.org/10.1016/j.precamres.2018.04.018 CrossRefGoogle Scholar
  32. Liou, J. G., Zhang, R. Y., Jahn, B. M., 1997. Petrology, Geochemistry and Isotope Data on a Ultrahigh-Pressure Jadeite Quartzite from Shuanghe, Dabie Mountains, East-Central China. Lithos, 41(1/2/3): 59–78. https://doi.org/10.1016/s0024-4937(97)82005-1 CrossRefGoogle Scholar
  33. Liu, F. L., Gerdes, A., Liou, J. G., et al., 2006. SHRIMP U-Pb Zircon Dating from Sulu-Dabie Dolomitic Marble, Eastern China: Constraints on Prograde, Ultrahigh-Pressure and Retrograde Metamorphic Ages. Journal of Metamorphic Geology, 24(7): 569–589. https://doi.org/10.1111/j.1525-1314.2006.00655.x CrossRefGoogle Scholar
  34. Liu, F. L., Xu, Z. Q., Liou, J. G., et al., 2002. Ultrahigh-Pressure Mineral Inclusions in Zircons from Gneissic Core Samples of the Chinese Continental Scientific Drilling Site in Eastern China. European Journal of Mineralogy, 14(3): 499–512. https://doi.org/10.1127/0935-1221/2002/0014-0499 CrossRefGoogle Scholar
  35. Liu, F. L., Xu, Z. Q., Liou, J. G., et al., 2007. Ultrahigh-Pressure Mineral Assemblages in Zircons from the Surface to 5158 m Depth in Cores of the Main Drill Hole, Chinese Continental Scientific Drilling Project, Southwestern Sulu Belt, China. International Geology Review, 49(5): 454–478. https://doi.org/10.2747/0020-6814.49.5.454 CrossRefGoogle Scholar
  36. Liu, F. L., Gerdes, A., Liou, J., et al., 2009. Unique Coesite-Bearing Zircon from Allanite-Bearing Gneisses: U-Pb, REE and Lu-Hf Properties and Implications for the Evolution of the Sulu UHP Terrane, China. European Journal of Mineralogy, 21(6): 1225–1250. https://doi.org/10.1127/0935-1221/2009/0021-1965 CrossRefGoogle Scholar
  37. Liu, F. L., Liou, J. G., 2011. Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism: A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks. Journal of Asian Earth Sciences, 40(1): 1–39. https://doi.org/10.1016/j.jseaes.2010.08.007 CrossRefGoogle Scholar
  38. Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546. https://doi.org/10.1007/s11434-010-3052-4 CrossRefGoogle Scholar
  39. Morimoto, N., Fabries, J., Ferguson, A. K., et al., 1988. Nomenclature of Pyroxenes. Mineralogical Magazine, 52(367): 535–550. https://doi.org/10.1180/minmag.1988.052.367.15 CrossRefGoogle Scholar
  40. Parkinson, C. D., Katayama, I., 1999. Present-Day Ultrahigh-Pressure Conditions of Coesite Inclusions in Zircon and Garnet: Evidence from Laser Raman Microspectroscopy. Geology, 27(11): 979–982.  https://doi.org/10.1130/0091-7613(1999)027<0979:pdupco>2.3.co;2 Google Scholar
  41. Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U–Pb Ages and Metamorphism. Chemical Geology, 184(1/2): 123–138. https://doi.org/10.1016/s0009-2541(01)00355-2 CrossRefGoogle Scholar
  42. Rubatto, D., Gebauer, D., 2000. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps. Cathodoluminescence in Geosciences. Springer Verlag Berlin, Heidelberg. 373–400Google Scholar
  43. Rubatto, D., Hermann, J., 2001. Exhumation as Fast as Subduction?. Geology, 29(1): 3–6.  https://doi.org/10.1130/0091-7613(2001)029<0003:eafas>2.0.co;2 CrossRefGoogle Scholar
  44. Schaltegger, U., Fanning, C. M., Günther, D., et al., 1999. Growth, Annealing and Recrystallization of Zircon and Preservation of Monazite in High-Grade Metamorphism: Conventional and in-situ U-Pb Isotope, Cathodoluminescence and Microchemical Evidence. Contributions to Mineralogy and Petrology, 134(2/3): 186–201. https://doi.org/10.1007/s004100050478 CrossRefGoogle Scholar
  45. Scherer, E. E., Cameron, K. L., Blichert-Toft, J., 2000. Lu-Hf Garnet Geochronology: Closure Temperature Relative to the Sm-Nd System and the Effects of Trace Mineral Inclusions. Geochimica et Cosmochimica Acta, 64(19): 3413–3432. https://doi.org/10.1016/s0016-7037(00)00440-3 CrossRefGoogle Scholar
  46. Schertl, H.-P., Hammerschmidt, K., 2016. Tracking the Incidence of Excess Argon in White Mica Ar-Ar Data from UHP Conditions to Upper Crustal Levels in the Dora-Maira Massif, Western Alps. European Journal of Mineralogy, 28(6): 1255–1275. https://doi.org/10.1127/ejm/2016/0028-2613 CrossRefGoogle Scholar
  47. Schertl, H.-P., Schreyer, W., 1996. Mineral Inclusions in Heavy Minerals of the Ultrahigh-Pressure Metamorphic Rocks of the Dora-Maira Massif and Their Bearing on the Relative Timing of the Petrological Events. In: Basu, A., Hart, S. R., eds., Earth Process: Reading the Isotopic Code. AGU Geophys. Monogr., 95: 331–342. https://doi.org/10.1029/gm095p0331 Google Scholar
  48. Schertl, H.-P., Schreyer, W., 2008. Geochemistry of Coesite-Bearing “Pyrope Quartzite” and Related Rocks from the Dora-Maira Massif, Western Alps. European Journal of Mineralogy, 20(5): 791–809. https://doi.org/10.1127/0935-1221/2008/0020-1862 CrossRefGoogle Scholar
  49. Schertl, H.-P., Schreyer, W., Chopin, C., 1991. The Pyrope-Coesite Rocks and Their Country Rocks at Parigi, Dora Maira Massif, Western Alps: Detailed Petrography, Mineral Chemistry and PT-Path. Contributions to Mineralogy and Petrology, 108(1/2): 1–21. https://doi.org/10.1007/bf00307322 CrossRefGoogle Scholar
  50. Schertl, H.-P., Neuser, R. D., Sobolev, N. V., et al., 2004. UHP-Metamorphic Rocks from Dora Maira/Western Alps and Kokchetav/Kazakhstan: New Insights Using Cathodoluminescence Petrography. European Journal of Mineralogy, 16(1): 49–57. https://doi.org/10.1127/0935-1221/2004/0016-0049 CrossRefGoogle Scholar
  51. Schertl, H.-P., Medenbach, O., Neuser, R. D., 2005. UHP-Metamorphic Rocks from Dora Maira, Western Alps: Cathodoluminescence of Silica and Twinning of Coesite. Russian Geology and Geophysics, 46: 1327–1332Google Scholar
  52. Schertl, H.-P., Maresch, W. V., Stanek, K. P., et al., 2012. New Occurrences of Jadeitite, Jadeite Quartzite and Jadeite-Lawsonite Quartzite in the Dominican Republic, Hispaniola: Petrological and Geochronological Overview. European Journal of Mineralogy, 24(2): 199–216. https://doi.org/10.1127/0935-1221/2012/0024-2201 CrossRefGoogle Scholar
  53. Schertl, H. P., Polednia, J., Neuser, R. D., et al., 2018. Natural End Member Samples of Pyrope and Grossular: A Cathodoluminescence-Microscopy and -Spectra Case Study. Journal of Earth Science, 29(5): 989–1004. https://doi.org/10.1007/s12583-018-0842-0 CrossRefGoogle Scholar
  54. Sobolev, N. V., Shatsky, V. S., Vavilov, M. A., et al., 1994. Zircon of High Pressure Metamorphic Rocks of Folded Areas as Unique Container of Inclusions of Diamond, Coesite and Coexisting Minerals. Doklady Akademii Nauk, 354: 488–492Google Scholar
  55. Sorensen, S., Harlow, G. E., Rumble, D. III, 2006. The Origin of Jadeitite-Forming Subduction-Zone Fluids: CL-Guided SIMS Oxygen-Isotope and Trace-Element Evidence. American Mineralogist, 91(7): 979–996. https://doi.org/10.2138/am.2006.1949 CrossRefGoogle Scholar
  56. Tilton, G. R., Schreyer, W., Schertl, H.-P., 1989. Pb-Sr-Nd Isotopic Behavior of Deeply Subducted Crustal Rocks from the Dora Maira Massif, Western Alps, Italy. Geochimica et Cosmochimica Acta, 53(6): 1391–1400. https://doi.org/10.1016/0016-7037(89)90071-9 CrossRefGoogle Scholar
  57. Tilton, G. R., Schreyer, W., Schertl, H.-P., 1991. Pb-Sr-Nd Isotopic Behavior of Deeply Subducted Crustal Rocks from the Dora Maira Massif, Western Alps, Italy-II: What is the Age of the Ultrahigh-Pressure Metamorphism?. Contributions to Mineralogy and Petrology, 108(1/2): 22–33. https://doi.org/10.1007/bf00307323 CrossRefGoogle Scholar
  58. Tsujimori, T., Harlow, G. E., 2012. Petrogenetic Relationships between Jadeitite and Associated High-Pressure and Low-Temperature Metamorphic Rocks in Worldwide Jadeitite Localities: A Review. European Journal of Mineralogy, 24(2): 371–390. https://doi.org/10.1127/0935-1221/2012/0024-2193 CrossRefGoogle Scholar
  59. Valley, J. W., Chiarenzelli, J. R., McLelland, J. M., 1994. Oxygen Isotope Geochemistry of Zircon. Earth and Planetary Science Letters, 126(4): 187–206. https://doi.org/10.1016/0012-821x(94)90106-6 CrossRefGoogle Scholar
  60. Vavra, G., 1990. On the Kinematics of Zircon Growth and Its Petrogenetic Significance: A Cathodoluminescence Study. Contributions to Mineralogy and Petrology, 106(1): 90–99. https://doi.org/10.1007/bf00306410 CrossRefGoogle Scholar
  61. Vavra, G., 1993. A Guide to Quantitative Morphology of Accessory Zircon. Chemical Geology, 110(1/2/3): 15–28. https://doi.org/10.1016/0009-2541(93)90245-e CrossRefGoogle Scholar
  62. Vavra, G., 1994. Systematics of Internal Zircon Morphology in Major Variscan Granitoid Types. Contributions to Mineralogy and Petrology, 117(4): 331–344. https://doi.org/10.1007/bf00307269 CrossRefGoogle Scholar
  63. Vavra, G., Gebauer, D., Schmid, R., et al., 1996. Multiple Zircon Growth and Recrystallization during Polyphase Late Carboniferous to Triassic Metamorphism in Granulites of the Ivrea Zone (Southern Alps): An Ion Microprobe (SHRIMP) Study. Contributions to Mineralogy and Petrology, 122(4): 337–358. https://doi.org/10.1007/s004100050132 CrossRefGoogle Scholar
  64. Vavra, G., Schmid, R., Gebauer, D., 1999. Internal Morphology, Habit and U-Th-Pb Microanalysis of Amphibolite-to-Granulite Facies Zircons: Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134(4): 380–404. https://doi.org/10.1007/s004100050492 CrossRefGoogle Scholar
  65. Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371 CrossRefGoogle Scholar
  66. Yui, T. F., Maki, K., Usuki, T., et al., 2010. Genesis of Guatemala Jadeitite and Related Fluid Characteristics: Insight from Zircon. Chemical Geology, 270(1/2/3/4): 45–55. https://doi.org/10.1016/j.chemgeo.2009.11.004 CrossRefGoogle Scholar
  67. Zhang, Z. M., Shen, K., Xiao, Y. L., et al., 2006. Mineral and Fluid Inclusions in Zircon of UHP Metamorphic Rocks from the CCSD-Main Drill Hole: A Record of Metamorphism and Fluid Activity. Lithos, 92(3/4): 378–398. https://doi.org/10.1016/j.lithos.2006.04.003 CrossRefGoogle Scholar
  68. Zhang, Z. M., Schertl, H.-P., Wang, J. L., et al., 2009. Source of Coesite Inclusions within Inherited Magmatic Zircon from Sulu UHP Rocks, Eastern China, and Their Bearing for Fluid-Rock Interaction and SHRIMP Dating. Journal of Metamorphic Geology, 27(4): 317–333. https://doi.org/10.1111/j.1525-1314.2009.00819.x CrossRefGoogle Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ruhr-University Bochum, Institute of GeologyMineralogy and GeophysicsBochumGermany
  2. 2.College of Earth Science & EngineeringShandong University of Science and TechnologyQingdaoChina
  3. 3.Department of Earth, Planetary, and Space SciencesUniversity of CaliforniaLos AngelesUSA

Personalised recommendations