Advertisement

Record of Early-Stage Rodingitization from the Purang Ophiolite Complex, Western Tibet

  • Songjie Wang
  • Xu-Ping LiEmail author
  • Wenyong Duan
  • Fanmei Kong
  • Zeli Wang
Article
  • 7 Downloads

Abstract

Rodingitization, commonly coupled with serpentinization of ultramafic rocks, bears significant information for fluid-rock interactions and element transfer from sea-floor to subduction zone environments. Numerous outcrops of rodingites are exposed along the Yarlung Zangbo suture zone (YZSZ) of southern Tibet, providing us an excellent opportunity to probe the petrogenetic processes, and unravel their implications for regional tectonic evolution. Several studies have been performed on rodingites from the eastern to central portions of the YZSZ, whereas limited work has ever been conducted on rodingitized rocks from the western segment of the YZSZ, precluding a comprehensive understanding of this lithological type. In this paper, we present detailed studies of petrology, mineral, whole-rock geochemistry and phase equilibrium modeling on a suite of newly recognized rodingites within the Purang ophiolite massif in the southwestern part of the YZSZ. The rodingites have a major metasomatic mineral association of chlorite, clinozoisite, amphibole and minor amounts of plagioclase, representing products of an early-stage rodingitization. They generally present compositions of low SiO2 (48.89 wt.%.53.57 wt.%), Fe2O3T (3.77 wt.%.5.56 wt.%), Na2O (1.31 wt.%.1.93 wt.%), Al2O3 (4.78 wt.%.8.84 wt.%), moderate CaO (9.69 wt.%.11.23 wt.%), and high MgO (24.11 wt.%.26.08 wt.%) concentrations with extremely high Mg# values [Mg#=100×Mg/(Mg+Fe2+) molar] of 89.92. Bulk-rock recalculation reveals that the rodingites have a protolith of mantle-derived olivine gabbro or gabbronorite. They have low rare earth element compositions (ΣREE=2.4 ppm.6.5 ppm) and are characterized by flat LREE and slightly enriched HREE patterns with positive Eu anomalies; they also exhibit positive anomalies in Sr, U and Pb and negative anomalies in high-field strength elements, including Nb, P and Ti, suggesting for a subduction-zone imprinting. Phase equilibrium modeling shows that the rodingitization did take place at P<2 kbar and T= ~350.400 °C, consistent with low greenschist facies conditions. Taking into account of all these petrological and geochemical features, we propose that the rodingites record evidence of early-stage fluid-rock interactions between olivine gabbroic rocks and Ca-rich fluids, which may have derived from weakly serpentinized ultramafic country rocks. Although this process may initially have occurred in a mid-ocean ridge setting, an obvious overprinting by supra-subduction zone fluids in a fore-arc environment is recognized.

Key words

Purang ophiolite complex early-stage rodingitization geochemistry phase equilibrium modeling western Tibet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We acknowledge financial supports for this research from the Natural Science Foundation of Shandong Province (No. ZR2018BD019), the National Natural Science Foundation of China (Nos. 41572044, 41230960, 41803031), and the Project funded by China Postdoctoral Science Foundation (No. 2017M622232). We appreciate constructive reviews from two anonymous reviewers and the editors. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1244-7.

References Cited

  1. Aitchison, J. C., Badengzhu, Davis, A. M., et al., 2000. Remnants of a Cretaceous Intra-Oceanic Subduction System within the Yarlung-Zangbo Suture (southern Tibet). Earth and Planetary Science Letters, 183(1/2): 231–244.  https://doi.org/10.1016/s0012-821x(00)00287-9 CrossRefGoogle Scholar
  2. Allégre, C. J., Courtillot, V., Tapponnier, P., et al., 1984. Structure and Evolution of the Himalaya-Tibet Orogenic Belt. Nature, 307(5946): 17–22.  https://doi.org/10.1038/307017a0 CrossRefGoogle Scholar
  3. Anhaeusser, C. R., 1979. Rodingite Occurrences in Some Archaean Ultramafic Complexes in the Barberton Mountain Land, South Africa. Precambrian Research, 8(1/2): 49–76.  https://doi.org/10.1016/0301-9268(79)90038-x CrossRefGoogle Scholar
  4. Aumento, F., Loubat, H., 1971. The Mid-Atlantic Ridge near 45°N. XVI. Serpentinized Ultramafic Intrusions. Canadian Journal of Earth Sciences, 8(6): 631–663.  https://doi.org/10.1139/e71-062 CrossRefGoogle Scholar
  5. Austrheim, H., Prestvik, T., 2008. Rodingitization and Hydration of the Oceanic Lithosphere as Developed in the Leka Ophiolite, North-Central Norway. Lithos, 104(1/2/3/4): 177–198.  https://doi.org/10.1016/j.lithos.2007.12.006 CrossRefGoogle Scholar
  6. Bach, W., Klein, F., 2009. The Petrology of Seafloor Rodingites: Insights from Geochemical Reaction Path Modeling. Lithos, 112(1/2): 103–117.  https://doi.org/10.1016/j.lithos.2008.10.022 CrossRefGoogle Scholar
  7. Bédard, É., Hébert, R., Guilmette, C., et al., 2009. Petrology and Geochemistry of the Saga and Sangsang Ophiolitic Massifs, Yarlung Zangbo Suture Zone, Southern Tibet: Evidence for an Arc-Back-Arc Origin. Lithos, 113(1/2): 48–67.  https://doi.org/10.1016/j.lithos.2009.01.011 CrossRefGoogle Scholar
  8. Bézard, R., Hébert, R., Wang, C. S., et al., 2011. Petrology and Geochemistry of the Xiugugabu Ophiolitic Massif, Western Yarlung Zangbo Suture Zone, Tibet. Lithos, 125(1/2): 347–367.  https://doi.org/10.1016/j.lithos.2011.02.019 CrossRefGoogle Scholar
  9. Bloomer, S. H., Hawkins, J. W., 1987. Petrology and Geochemistry of Boninite Series Volcanic Rocks from the Mariana Trench. Contributions to Mineralogy and Petrology, 97(3): 361–377.  https://doi.org/10.1007/bf00371999 CrossRefGoogle Scholar
  10. Carson, C. J., Powell, R., Clarke, G. L., 1999. Calculated Mineral Equilibria for Eclogites in CaO-Na2O-FeO-MgO-Al2O3-SiO2-H2O: Application to the Pouébo Terrane, Pam Peninsula, New Caledonia. Journal of Metamorphic Geology, 17(1): 9–24.  https://doi.org/10.1046/j.1525-1314.1999.00177.x CrossRefGoogle Scholar
  11. Chen, H. K., Li, X.-P., Chen, S., et al., 2016. Geochemistry and Geochronology of Mafic Rocks in the Purang Ophiolite, Tibet. Advances in Geosciences, 6(1): 30–43.  https://doi.org/10.12677/ag.2016.61005 (in Chinese with English Abstract)CrossRefGoogle Scholar
  12. Cheng, C., Xia, B., Zheng, H., et al., 2018. Chronology, Geochemistry and Tectonic Significance of Daba Ophiolites in Western Segment of Yarlung Zangbo Suture Zone, Tibet. Earth Science, 43(4): 975–990.  https://doi.org/10.3799/dqkx.2018.703 (in Chinese with English Abstract)Google Scholar
  13. Coleman, R. G., 1963. Serpentinites, Rodingites, and Tectonic Inclusions in Alpine-Type Mountain Chains. Geological Society of America, Special Papers, 73: 130–131Google Scholar
  14. Connolly, J. A. D., 1990. Multivariable Phase Diagrams: An Algorithm Based on Generalized Thermodynamics. American Journal of Science, 290(6): 666–718.  https://doi.org/10.2475/ajs.290.6.666 CrossRefGoogle Scholar
  15. Dai, J. G., Wang, C. S., Hébert, R., et al., 2011. Petrology and Geochemistry of Peridotites in the Zhongba Ophiolite, Yarlung Zangbo Suture Zone: Implications for the Early Cretaceous Intra-Oceanic Subduction Zone within the Neo-Tethys. Chemical Geology, 288(3/4): 133–148.  https://doi.org/10.1016/j.chemgeo.2011.07.011 CrossRefGoogle Scholar
  16. Dai, J. G., Wang, C. S., Li, Y. L., 2012. Relicts of the Early Cretaceous Seamounts in the Central-Western Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Asian Earth Sciences, 53: 25–37.  https://doi.org/10.1016/j.jseaes.2011.12.024 CrossRefGoogle Scholar
  17. Dewey, J. F., Shackleton, R. M., Chengfa, C., et al., 1988. The Tectonic Evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 327(1594): 379–413.  https://doi.org/10.1098/rsta.1988.0135 CrossRefGoogle Scholar
  18. Diener, J. F. A., Powell, R., White, R. W., et al., 2007. A New Thermodynamic Model for Clino- and Orthoamphiboles in the System Na2O-CaO-FeOMgO- Al2O3-SiO2-H2O-O. Journal of Metamorphic Geology, 25(6): 631–656.  https://doi.org/10.1111/j.1525-1314.2007.00720.x CrossRefGoogle Scholar
  19. Dubi.ska, E., 1995. Rodingites of the Eastern Part of the Jordanow- Gogolow Serpentinite Massif, Lower Silesia, Poland. The Canadian Mineralogist, 33(3): 585–608Google Scholar
  20. Dubińska, E., Bylina, P., Kozłowski, A., et al., 2004. U-Pb Dating of Serpentinization: Hydrothermal Zircon from a Metasomatic Rodingite Shell (Sudetic Ophiolite, SW Poland). Chemical Geology, 203(3/4): 183–203.  https://doi.org/10.1016/j.chemgeo.2003.10.005 CrossRefGoogle Scholar
  21. Evans, B. W., Trommsdorff, V., Richter, W., 1979. Petrology of an Eclogite- Metarodingite Suite at Cima di Gagnone, Ticino, Switzerland. American Mineralogist, 64(1/2): 15–31Google Scholar
  22. Frost, B. R., Beard, J. S., 2007. On Silica Activity and Serpentinization. Journal of Petrology, 48(7): 1351–1368.  https://doi.org/10.1093/petrology/egm021 CrossRefGoogle Scholar
  23. Frost, B. R., Beard, J. S., McCaig, A., et al., 2008. The Formation of Micro- Rodingites from IODP Hole U1309D: Key to Understanding the Process of Serpentinization. Journal of Petrology, 49(9): 1579–1588.  https://doi.org/10.1093/petrology/egn038 CrossRefGoogle Scholar
  24. Green, E., Holland, T., Powell, R., 2007. An Order-Disorder Model for Omphacitic Pyroxenes in the System Jadeite-Diopside-Hedenbergite-Acmite, with Applications to Eclogitic Rocks. American Mineralogist, 92(7): 1181–1189.  https://doi.org/10.2138/am.2007.2401 CrossRefGoogle Scholar
  25. Guilmette, C., Hebert, R., Dupuis, C., et al., 2008. Metamorphic History and Geodynamic Significance of High-Grade Metabasites from the Ophiolitic Melange beneath the Yarlung Zangbo Ophiolites, Xigaze Area, Tibet. Journal of Asian Earth Sciences, 32(5/6): 423–437.  https://doi.org/10.1016/j.jseaes.2007.11.013 CrossRefGoogle Scholar
  26. Girardeau, J., Mercier, J. C. C., Wang, X. B., 1985a. Petrology of the Mafic Rocks of the Xigaze Ophiolite, Tibet. Contributions to Mineralogy and Petrology, 90(4): 309–321.  https://doi.org/10.1007/bf00384710 CrossRefGoogle Scholar
  27. Girardeau, J., Mercier, J. C. C., Yougong, Z., 1985b. Origin of the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, Southern Tibet. Tectonophysics, 119(1/2/3/4): 407–433.  https://doi.org/10.1016/0040-1951(85)90048-4 CrossRefGoogle Scholar
  28. Gresens, R. L., 1967. Composition-Volume Relationships of Metasomatism. Chemical Geology, 2: 47–65.  https://doi.org/10.1016/0009-2541(67)90004-6 CrossRefGoogle Scholar
  29. Guo, G. L., Yang, J. S., Liu, X. D., et al., 2015. Mid-Ocean Ridge (MOR) and Suprasubduction Zone (SSZ) Geological Events in the Yarlung Zangbo Suture Zone: Evidence from the Mineral Record of Mantle Peridotites. Journal of Asian Earth Sciences, 110: 33–54.  https://doi.org/10.1016/j.jseaes.2015.02.012 CrossRefGoogle Scholar
  30. Guo, J. L., Zhang, H. F., Xu, W. C., et al., 2019. The Bulk Crustal Composition of the Southeastern Lhasa Terrane and Its Origin. Earth Science, 44(6): 1809–1821.  https://doi.org/10.3799/dqkx.2019.040 (in Chinese with English Abstract)Google Scholar
  31. Hatzipanagiotou, K., Tsikouras, B., 2001. Rodingite Formation from Diorite in the Samothraki Ophiolite, NE Aegean, Greece. Geological Journal, 36(2): 93–109.  https://doi.org/10.1002/gj.887 CrossRefGoogle Scholar
  32. Hawthorne, F. C., Oberti, R., Harlow, G. E., et al., 2012. Nomenclature of the Amphibole Supergroup. American Mineralogist, 97(11/12): 2031–2048.  https://doi.org/10.2138/am.2012.4276 CrossRefGoogle Scholar
  33. Hebert, R., Bezard, R., Guilmette, C., et al., 2012. The Indus-Yarlung Zangbo Ophiolites from Nanga Parbat to Namche Barwa Syntaxes, Southern Tibet: First Synthesis of Petrology, Geochemistry, and Geochronology with Incidences on Geodynamic Reconstructions of Neo-Tethys. Gondwana Research, 22(2): 377–397.  https://doi.org/10.1016/j.gr.2011.10.013 CrossRefGoogle Scholar
  34. Holland, T. J. B., Powell, R., 1991. A Compensated-Redlich-Kwong (CORK) Equation for Volumes and Fugacities of CO2 and H2O in the Range 1 bar to 50 kbar and 100.1 600 oC. Contributions to Mineralogy and Petrology, 109(2): 265–273.  https://doi.org/10.1007/bf00306484 CrossRefGoogle Scholar
  35. Holland, T. J. B., Powell, R., 1998. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 16(3): 309–343.  https://doi.org/10.1111/j.1525-1314.1998.00140.x CrossRefGoogle Scholar
  36. Holland, T., Baker, J., Powell, R., 1998. Mixing Properties and Activity- Composition Relationships of Chlorites in the System MgO-FeO-Al2O3-SiO2-H2O. European Journal of Mineralogy, 10(3): 395–406.  https://doi.org/10.1127/ejm/10/3/0395 CrossRefGoogle Scholar
  37. Honnorez, J., Kirst, P., 1975. Petrology of Rodingites from the Equatorial Mid-Atlantic Fracture Zones and Their Geotectonic Significance. Contributions to Mineralogy and Petrology, 49(3): 233–257.  https://doi.org/10.1007/bf00376590 CrossRefGoogle Scholar
  38. Huot, F., Hebert, R., Varfalvy, V., et al., 2002. The Beimarang Melange (Southern Tibet) Brings Additional Constraints in Assessing the Origin, Metamorphic Evolution and Obduction Processes of the Yarlung Zangbo Ophiolite. Journal of Asian Earth Sciences, 21(3): 307–322.  https://doi.org/10.1016/s1367-9120(02)00053-6 CrossRefGoogle Scholar
  39. Kawamoto, T., Hertwig, A., Schertl, H. P., et al., 2018. Fluid Inclusions in Jadeitite and Jadeite-Rich Rock from Serpentinite Melanges in Northern Hispaniola: Trapped Ambient Fluids in a Cold Subduction Channel. Lithos, 308/309: 227–241.  https://doi.org/10.1016/j.lithos.2018.02.024 CrossRefGoogle Scholar
  40. Koutsovitis, P., Magganas, A., Pomonis, P., et al., 2013. Subduction-Related Rodingites from East Othris, Greece: Mineral Reactions and Physicochemical Conditions of Formation. Lithos, 172/173: 139–157.  https://doi.org/10.1016/j.lithos.2013.04.009 CrossRefGoogle Scholar
  41. Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles; Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazine, 61(405): 295–310.  https://doi.org/10.1180/minmag.1997.061.405.13 CrossRefGoogle Scholar
  42. Li, J. F., Xia, B., Liu, L. et al., 2008. SHRIMP U-Pb Zircon Dating of Diabase in the La’nga Co Ophiolite, Burang, Tibet, China, and Its Geological Significance. Geological Bulletin of China, 27(10): 1739–1743 (in Chinese with English Abstract)Google Scholar
  43. Li, X.-P., Rahn, M., Bucher, K., 2004a. Metamorphic Processes in Rodingites of the Zermatt-Saas Ophiolites. International Geology Review, 46(1): 28–51.  https://doi.org/10.2747/0020-6814.46.1.28 CrossRefGoogle Scholar
  44. Li, X.-P., Rahn, M., Bucher, K., 2004b. Serpentinites of the Zermatt-Saas Ophiolite Complex and Their Texture Evolution. Journal of Metamorphic Geology, 22(3): 159–177.  https://doi.org/10.1111/j.1525-1314.2004.00503.x CrossRefGoogle Scholar
  45. Li, X.-P., Zhang, L., Wei, C., et al., 2007. Petrology of Rodingite Derived from Eclogite in Western Tianshan, China. Journal of Metamorphic Geology, 25(3): 363–382.  https://doi.org/10.1111/j.1525-1314.2007.00700.x CrossRefGoogle Scholar
  46. Li, X.-P., Rahn, M., Bucher, K., 2008a. Eclogite Facies Metarodingites-Phase Relations in the System SiO2-Al2O3-Fe2O3-FeO-MgO-CaO-CO2-H2O: An Example from the Zermatt-Saas Ophiolite. Journal Of Metamorphic Geology, 26(3): 347–364.  https://doi.org/10.1111/j.1525-1314.2008.00761.x CrossRefGoogle Scholar
  47. Li, X.-P., Zhang, L. F., Wang, Z. L., 2008b. Geochemistry of Rodingite Derived from Eclogite in Western Tianshan, China. Acta Petrologica Sinica, 24(4): 711–717 (in Chinese with English Abstract)Google Scholar
  48. Li, X.-P., Zhang, L. F., Wilde, S. A., et al., 2010. Zircons from Rodingite in the Western Tianshan Serpentinite Complex: Mineral Chemistry and U-Pb Ages Define Nature and Timing of Rodingitization. Lithos, 118(1/2): 17–34.  https://doi.org/10.1016/j.lithos.2010.03.009 CrossRefGoogle Scholar
  49. Li, X.-P., Chen, H. K., Wang, Z. L., et al., 2015. Spinel Peridotite, Olivine Websterite and the Textural Evolution of the Purang Ophiolite Complex, Western Tibet. Journal of Asian Earth Sciences, 110: 55–71.  https://doi.org/10.1016/j.jseaes.2014.06.023 CrossRefGoogle Scholar
  50. Li, X.-P., Duan, W. Y., Zhao, L. Q., et al., 2017. Rodingites from the Xigaze Ophiolite, Southern Tibet—New Insights into the Processes of Rodingitization. European Journal of Mineralogy, 29(5): 821–837.  https://doi.org/10.1127/ejm/2017/0029-2633 CrossRefGoogle Scholar
  51. Li, X.-P., Wang, X., Chen, S., et al., 2018. Petrology and Zircon U-Pb Dating of Meta-Calcsilicate from the Jiaobei Terrane in the Jiao-Liao-Ji Belt of the North China Craton. Precambrian Research, 313: 221–241.  https://doi.org/10.1016/j.precamres.2018.04.018 CrossRefGoogle Scholar
  52. Liu, C. Z., Wu, F. Y., Wilde, S. A., et al., 2010. Anorthitic Plagioclase and Pargasitic Amphibole in Mantle Peridotites from the Yungbwa Ophiolite (Southwestern Tibetan Plateau) Formed by Hydrous Melt Metasomatism. Lithos, 1143/4): 413–422.  https://doi.org/10.1016/j.lithos.2009.10.008 CrossRefGoogle Scholar
  53. Liu, C. Z., Wu, F. Y., Chu, Z. Y., et al., 2012. Preservation of Ancient Os Isotope Signatures in the Yungbwa Ophiolite (Southwestern Tibet) after Subduction Modification. Journal of Asian Earth Sciences, 53: 38–50.  https://doi.org/10.1016/j.jseaes.2011.08.010 CrossRefGoogle Scholar
  54. Liu, C. Z., Zhang, C., Yang, L. Y., et al., 2014. Formation of Gabbronorites in the Purang Ophiolite (SW Tibet) through Melting of Hydrothermally Altered Mantle along a Detachment Fault. Lithos, 205: 127–141.  https://doi.org/10.1016/j.lithos.2014.06.019 CrossRefGoogle Scholar
  55. Liu, F., Yang, J. S., Dilek, Y., et al., 2015. Geochronology and Geochemistry of Basaltic Lavas in the Dongbo and Purang Ophiolites of the Yarlung- Zangbo Suture Zone: Plume-Influenced Continental Margin-Type Oceanic Lithosphere in Southern Tibet. Gondwana Research, 27(2): 701–718.  https://doi.org/10.1016/j.gr.2014.08.002 CrossRefGoogle Scholar
  56. Liu, F., Lian, D. Y., Niu, X. L., et al., 2018. Dongbo MORB-Type Isotropic Gabbro Emplaced as an Oceanic Core Complex in Western Yarlung Zangbo Suture Zone, Tibet. Earth Science, 43(4): 952–974.  https://doi.org/10.3799/dqkx.2018.702 (in Chinese with English Abstract)Google Scholar
  57. Liu, H., Li, X.-P., Kong, F. M., et al., 2019. Ultra-High Temperature Overprinting of High Pressure Pelitic Granulites in the Huai'an Complex, North China Craton: Evidence from Thermodynamic Modeling and Isotope Geochronology. Gondwana Research, 72: 15–33.  https://doi.org/10.1016/j.gr.2019.02.003 CrossRefGoogle Scholar
  58. Liu, Z., Li, Y., Xiong, F. H., et al., 2011. Petrology and Geochronology of MOR Gabbro in the Purang Ophiolite of Western Tibet, China. Acta Petrologica Sinica, 27(11): 3269–3279 (in Chinese with English Abstract)Google Scholar
  59. Luo, A. B., Fan, J. J., Wang, M., et al., 2019. Age of Flysch in Bangong-Nujiang Ocean: Constraints of Detrital Zircon from Yaduo Village of Gerze County. Earth Science, 44(7): 2426–2440.  https://doi.org/10.3799/dqkx.2018.944 (in Chinese with English Abstract)Google Scholar
  60. Malpas, J., Zhou, M. F., Robinson, P. T., et al., 2003. Geochemical and Geochronological Constraints on the Origin and Emplacement of the Yarlung Zangbo Ophiolites, Southern Tibet. Geological Society, London, Special Publications, 218(1): 191–206.  https://doi.org/10.1144/gsl.sp.2003.218.01.11 CrossRefGoogle Scholar
  61. Marshall, P., 1911. The Geology of the Dun Mountain Subdivision, Nelson. Geological Survey New Zealand, 12: 31–35Google Scholar
  62. Massonne, H. J. W., Willner, A. P., 2008. Phase Relations and Dehydration Behaviour of Psammopelite and Mid-Ocean Ridge Basalt at Very-Low-Grade to Low-Grade Metamorphic Conditions. European Journal of Mineralogy, 20(5): 867–879.  https://doi.org/10.1127/0935-1221/2008/0020-1871 CrossRefGoogle Scholar
  63. McCulloch, M. T., Gamble, J. A., 1991. Geochemical and Geodynamical Constraints on Subduction Zone Magmatism. Earth and Planetary Science Letters, 102(3/4): 358–374.  https://doi.org/10.1016/0012-821x(91)90029-h CrossRefGoogle Scholar
  64. Meng, Y. K., Xiong, F. H., Xu, Z. Q., et al., 2019. Petrogenesis of Late Cretaceous Mafic Enclaves and Their Host Granites in the Nyemo Region of Southern Tibet: Implications for the Tectonic-Magmatic Evolution of the Central Gangdese Belt. Journal of Asian Earth Sciences, 176: 27–41.  https://doi.org/10.1016/j.jseaes.2019.01.041 CrossRefGoogle Scholar
  65. Miller, C., Thöni, M., Frank, W., et al., 2003. Geochemistry and Tectonomagmatic Affinity of the Yungbwa Ophiolite, SW Tibet. Lithos, 66(3/4): 155–172.  https://doi.org/10.1016/s0024-4937(02)00217-7 CrossRefGoogle Scholar
  66. Murton, B. J., 1989. Tectonic Controls on Boninite Genesis. Geological Society, London, Special Publications, 42(1): 347–377.  https://doi.org/10.1144/gsl.sp.1989.042.01.20 CrossRefGoogle Scholar
  67. Nicolas, A., Girardeau, J., Marcoux, J., et al., 1981. The Xigaze Ophiolite (Tibet): A Peculiar Oceanic Lithosphere. Nature, 294(5840): 414–417.  https://doi.org/10.1038/294414a0 CrossRefGoogle Scholar
  68. O’Hanley, D. S., Schandl, E. S., Wicks, F. J., 1992. The Origin of Rodingites from Cassiar, British Columbia, and Their Use to Estimate T and P (H2O) during Serpentinization. Geochimica et Cosmochimica Acta, 56(1): 97–108.  https://doi.org/10.1016/0016-7037(92)90119-4 CrossRefGoogle Scholar
  69. O’Hanley, D. S., 1996. Serpentinites: Records of Tectonic and Petrological History. Oxford University Press, New York. 277Google Scholar
  70. Pan, G. T., Chen, Z. L., Li, X. Z., et al., 1997. Geological-Tectonic Evolution in the Eastern Tethys. Geological Publishing House, Beijing. 1–191 (in Chinese)Google Scholar
  71. Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3–14.  https://doi.org/10.1016/j.jseaes.2011.12.018 CrossRefGoogle Scholar
  72. Pearce, J. A., 1976. Statistical Analysis of Major Element Patterns in Basalts. Journal of Petrology, 17(1): 15–43.  https://doi.org/10.1093/petrology/17.1.15 CrossRefGoogle Scholar
  73. Pearce, J. A., 2014. Immobile Element Fingerprinting of Ophiolites. Elements, 10(2): 101–108.  https://doi.org/10.2113/gselements.10.2.101 CrossRefGoogle Scholar
  74. Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33–47.  https://doi.org/10.1007/bf00375192 CrossRefGoogle Scholar
  75. Polat, A., Hofmann, A. W., Rosing, M. T., 2002. Boninite-Like Volcanic Rocks in the 3.7–3.8 Ga Isua Greenstone Belt, West Greenland: Geochemical Evidence for Intra-Oceanic Subduction Zone Processes in the Early Earth. Chemical Geology, 184(3/4): 231–254.  https://doi.org/10.1016/s0009-2541(01)00363-1CrossRefGoogle Scholar
  76. Ragnarsdóttir, K. V., Walther, J. V., 1985. Experimental Determination of Corundum Solubilities in Pure Water between 400–700 °C and 1–3 kbar. Geochimica et Cosmochimica Acta, 49(10): 2109–2115.  https://doi.org/10.1016/0016-7037(85)90068-7 CrossRefGoogle Scholar
  77. Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, Essex. 352Google Scholar
  78. Schandl, E. S., Mittwede, S. K., 2001. Evolution of the Acipayam (Denizli, Turkey) Rodingites. International Geology Review, 43(7): 611–623.  https://doi.org/10.1080/00206810109465036 CrossRefGoogle Scholar
  79. Schandl, E. S., O’Hanley, D. S., Wicks, F. J., 1989. Rodingites in Serpentinized Ultramafic Rocks of the Abitibi Greenstone Belt, Ontario. The Canadian Mineralogist, 27(4): 579–591Google Scholar
  80. Shen, T. T., Zhang, L. F., Li, X.-P., 2012. Geochemical Characteristics of Rodingite Derived from Eclogite in Western Tianshan, Xinjiang, China and Its Implication for Subduction Zone Fluid. Acta Petrologica Sinica, 28(7): 2235–2249 (in Chinese with English Abstract)Google Scholar
  81. Shen, T. T., Wu, F. Y., Zhang, L. F., et al., 2016. In-situ U-Pb Dating and Nd Isotopic Analysis of Perovskite from a Rodingite Blackwall Associated with UHP Serpentinite from Southwestern Tianshan, China. Chemical Geology, 431: 67–82.  https://doi.org/10.1016/j.chemgeo.2016.03.029 CrossRefGoogle Scholar
  82. Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59(1): 101–118.  https://doi.org/10.1016/0012-821x(82)90120-0 CrossRefGoogle Scholar
  83. Sun, G. M., Li, X.-P., Duan, W. Y., et al., 2018. Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 29(5): 1026–1039.  https://doi.org/10.1007/s12583-018-0854-9 CrossRefGoogle Scholar
  84. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345.  https://doi.org/10.1144/gsl.sp.1989.042.01.19 CrossRefGoogle Scholar
  85. Tang, Y., Zhai, Q. G., Hu, P. Y., et al., 2018. Rodingite from the Beila Ophiolite in the Bangong-Nujiang Suture Zone, Northern Tibet: New Insights into the Formation Ofophiolite-Related Rodingite. Lithos, 316/317: 33–47.  https://doi.org/10.1016/j.lithos.2018.07.006 CrossRefGoogle Scholar
  86. Tapponnier, P., Mercier, J. L., Proust, F., et al., 1981. The Tibetan Side of the India-Eurasia Collision. Nature, 294(5840): 405–410.  https://doi.org/10.1038/294405a0 CrossRefGoogle Scholar
  87. Taylor, R. N., Nesbitt, R. W., Vidal, P., et al., 1994. Mineralogy, Chemistry, and Genesis of the Boninite Series Volcanics, Chichijima, Bonin Islands, Japan. Journal of Petrology, 35(3): 577–617.  https://doi.org/10.1093/petrology/35.3.577 CrossRefGoogle Scholar
  88. Thayer, T. P., 1966. Serpentinization Considered as a Constant-Volume Metasomatic Process. American Mineralogist: Journal of Earth and Planetary Materials, 51(5/6): 685–710Google Scholar
  89. Tsikouras, B., Karipi, S., Rigopoulos, I., et al., 2009. Geochemical Processes and Petrogenetic Evolution of Rodingite Dykes in the Ophiolite Complex of Othrys (Central Greece). Lithos, 113(3/4): 540–554.  https://doi.org/10.1016/j.lithos.2009.06.013 CrossRefGoogle Scholar
  90. Tsikouras, B., Karipi, S., Hatzipanagiotou, K., 2013. Evolution of Rodingites along Stratigraphic Depth in the Iti and Kallidromon Ophiolites (Central Greece). Lithos, 175/176: 16–29.  https://doi.org/10.1016/j.lithos.2013.04.021 CrossRefGoogle Scholar
  91. Walther, J. V., 1997. Experimental Determination and Interpretation of the Solubility of Corundum in H2O between 350 and 600 °C from 0.5 to 2.2 kbar. Geochimica et Cosmochimica Acta, 61(23): 4955–4964.  https://doi.org/10.1016/s0016-7037(97)00282-2 CrossRefGoogle Scholar
  92. Wang, J. P., Li, X. W., Ning, W. B., et al., 2019. Geology of a Neoarchean Suture: Evidence from the Zunhua Ophiolitic Mélange of the Eastern Hebei Province, North China Craton. GSA Bulletin.  https://doi.org/10.1130/b35138.1 Google Scholar
  93. Wang, S. J., Wang, L., Brown, M., et al., 2017. Fluid Generation and Evolution during Exhumation of Deeply Subducted UHP Continental Crust: Petrogenesis of Composite Granite-Quartz Veins in the Sulu Belt, China. Journal of Metamorphic Geology, 35(6): 601–629.  https://doi.org/10.1111/jmg.12248 CrossRefGoogle Scholar
  94. Wang, S. J., Li, X.-P., Schertl, H.-P., et al., 2019a. Petrogenesis of Early Cretaceous Andesite Dykes in the Sulu Orogenic Belt, Eastern China. Mineralogy and Petrology, 113(1): 77–97.  https://doi.org/10.1007/s00710-018-0636-1 CrossRefGoogle Scholar
  95. Wang, S. J., Schertl, H.-P., Pang, Y. M., 2019b. Geochemistry, Geochronology and Sr-Nd-Hf Isotopes of Two Types of Early Cretaceous Granite Porphyry Dykes in the Sulu Orogenic Belt, Eastern China. Canadian Journal of Earth Sciences.  https://doi.org/10.1139/cjes-2019-0003 Google Scholar
  96. Wang, Z. L., Liu, J. G., Li, X.-P., et al., 2012. Mineralogy of Spinel in the Eastern Purang Ultramafic Rocks, Xizang (Tibet) and Its Geological Implication. Geological Review, 58(6): 1038–1045 (in Chinese with English Abstract)Google Scholar
  97. Wei, C. J., 2018. Paleoproterozoic Metamorphism and Tectonic Evolution in Wutai-Hengshan Region, Trans-North China Orogen. Earth Science, 43(1): 25–43.  https://doi.org/10.3799/dqkx.2018.002 (in Chinese withEnglish Abstract)Google Scholar
  98. Wei, C. J., 2011. Approaches and Advancement of the Study of Metamorphic P-T-t Paths. Earth Science Frontiers, 18(2): 1–16 (in Chinese with English Abstract)Google Scholar
  99. Wei, C. J., Wang, W., 2007. Phase Equilibria in the Process of Anatexis in High-Grade Metapelites. Earth Science Frontiers, 14(1): 125–134.  https://doi.org/10.1016/s1872-5791(07)60006-2 CrossRefGoogle Scholar
  100. Wei, C. J., Qian, J. H., Tian, Z. L., 2013. Metamorphic Evolution of Medium-Temperature Ultra-High Pressure (MT-UHP) Eclogites from the South Dabie Orogen, Central China: An Insight from Phase Equilibria Modelling. Journal of Metamorphic Geology, 31(7): 755–774.  https://doi.org/10.1111/jmg.12043 CrossRefGoogle Scholar
  101. White, R. W., Powell, R., Holland, T. J. B., et al., 2000. The Effect of TiO2 and Fe2O3 on Metapelitic Assemblages at Greenschist and Amphibolite Facies Conditions: Mineral Equilibria Calculations in the System K2O-FeOMgO- Al2O3-SiO2-H2O-TiO2-Fe2O3f. Journal of Metamorphic Geology, 18(5): 497–511.  https://doi.org/10.1046/j.1525-1314.2000.00269.x CrossRefGoogle Scholar
  102. White, R. W., Powell, R., Holland, T. J. B., 2001. Calculation of Partial Melting Equilibria in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 19(2): 139–153.  https://doi.org/10.1046/j.0263-4929.2000.00303.x CrossRefGoogle Scholar
  103. White, R. W., Powell, R., Holland, T. J. B., 2007. Progress Relating to Calculation of Partial Melting Equilibria for Metapelites. Journal of Metamorphic Geology, 25(5): 511–527.  https://doi.org/10.1111/j.1525-1314.2007.00711.x CrossRefGoogle Scholar
  104. Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185–187.  https://doi.org/10.2138/am.2010.3371 CrossRefGoogle Scholar
  105. Wu, Y., Chen, S. Y., Qin, M. K., 2018. Zircon U-Pb Ages of Dongcuo Ophiolite in Western Bangonghu-Nujiang Suture Zone and Their Geological Significance. Earth Science, 43(4): 1070–1084.  https://doi.org/10.3799/dqkx.2018.710 (in Chinese with English Abstract)Google Scholar
  106. Xia, B., Yu, H. X., Chen, G. W., et al., 2003. Geochemistry and Tectonic Environment of the Dagzhuka Ophiolite in the Yarlung-Zangbo Suture Zone, Tibet. Geochemical Journal, 37(3): 311–324.  https://doi.org/10.2343/geochemj.37.311 CrossRefGoogle Scholar
  107. Xia, B., Brown, M., Wang, L., et al., 2018. Phase Equilibrium Modeling of MT-UHP Eclogite: A Case Study of Coesite Eclogite at Yangkou Bay, Sulu Belt, Eastern China. Journal of Petrology, 59(7): 1253–1280.  https://doi.org/10.1093/petrology/egy060 CrossRefGoogle Scholar
  108. Xiong, F. H., Meng, Y. K., Yang, J. S., et al., 2019. Geochronology and Petrogenesis of the Mafic Dykes from the Purang Ophiolite: Implications for Evolution of the Western Yarlung-Tsangpo Suture Zone, Southwestern Tibet. Geoscience Frontiers.  https://doi.org/10.1016/j.gsf.2019.05.006 Google Scholar
  109. Xiong, F. H., Yang, J. S., Liu, Z., et al., 2013. High-Cr and High-Al Chromitite Found in Western Yarlung-Zangbo Suture Zone in Tibet. Acta Petrologica Sinica, 29: 1878–1908 (in Chinese with English Abstract)Google Scholar
  110. Xiong, F. H., Yang, J. S., Li, Y., et al., 2015. Tectonic Setting of Dongbo Ophiolite in the Western Portion of the Yarlung Zangbo Suture Zone, Tibet. Earth Science, 36(1): 31–40 (in Chinese with English Abstract)Google Scholar
  111. Xu, J. F., Castillo, P. R., 2004. Geochemical and Nd-Pb Isotopic Characteristics of the Tethyan Asthenosphere: Implications for the Origin of the Indian Ocean Mantle Domain. Tectonophysics, 393(1/2/3/4): 9–27.  https://doi.org/10.1016/j.tecto.2004.07.028 CrossRefGoogle Scholar
  112. Xu, X. Z., Yang, J. S., Guo, G. L., et al., 2011a. Lithological Research on the Purang Mantle Peridotite in Western Yarlung-Zangbu Suture Zone in Tibet. Acta Petrologica Sinica, 27(11): 3179–3196 (in Chinese with English Abstract)Google Scholar
  113. Xu, X. Z., Yang, J. S., Badengzhu, et al., 2011b. Petrogenesis of the Kangjinla Peridotite in the Luobusa Ophiolite, Southern Tibet. Journal of Asian Earth Sciences, 42(4): 553–568.  https://doi.org/10.1016/j.jseaes.2011.05.007 CrossRefGoogle Scholar
  114. Yamamoto, S., Komiya, T., Hirose, K., et al., 2009. Coesite and Clinopyroxene Exsolution Lamellae in Chromites: In-situ Ultrahigh-Pressure Evidence from Podiform Chromitites in the Luobusa Ophiolite, Southern Tibet. Lithos, 109(3/4): 314–322.  https://doi.org/10.1016/j.lithos.2008.05.003 CrossRefGoogle Scholar
  115. Yang, J. S., Zhang, Z. M., Li, T. F., et al., 2008. Unusual Minerals from Harzburgite, the Host Rock of the Luobusa Chromite Deposit, Tibet. Acta Petrologica Sinica, 24(7): 1445–1452 (in Chinese with English Abstract)Google Scholar
  116. Yang, J. S., Xu, X. Z., Li, Y., et., 2011. Diamonds Recovered from Peridotite of the Purang Ophiolite in the Yarlung-Zangbo Suture of Tibet: A Proposal for a New Type of Diamond Occurrence. Acta Petrologica Sinica, 27(11): 3171–3178 (in Chinese with English Abstract).Google Scholar
  117. Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan- Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211–280.  https://doi.org/10.1146/annurev.earth.28.1.211 CrossRefGoogle Scholar
  118. Zanoni, D., Rebay, G., Spalla, M. I., 2016. Ocean Floor and Subduction Record in the Zermatt-Saas Rodingites, Valtournanche, Western Alps. Journal of Metamorphic Geology, 34(9): 941–961.  https://doi.org/10.1111/jmg.12215 CrossRefGoogle Scholar
  119. Zhang, C., Bader, T., Zhang, L. M., et al., 2018. Metamorphic Evolution and Age Constraints of the Garnet-Bearing Mica Schist from the Xindaduo Area of the Sumdo (U)HP Metamorphic Belt, Tibet. Geological Magazine, 156(7): 1175–1189.  https://doi.org/10.1017/s001675681800033x CrossRefGoogle Scholar
  120. Zhang, L. L., Liu, C. Z., Wu, F. Y., et al., 2016. Sr-Nd-Hf Isotopes of the Intrusive Rocks in the Cretaceous Xigaze Ophiolite, Southern Tibet: Constraints on Its Formation Setting. Lithos, 258/259: 133–148.  https://doi.org/10.1016/j.lithos.2016.04.026 CrossRefGoogle Scholar
  121. Zhang, X., Li, X.-P., Wang, Z. L., et al., 2016. Mineralogical and Petrogeochemical Characteristics of the Garnet Amphibolites in the Xigaze Ophiolite, Tibet. Acta Petrologica Sinica, 32: 3685–3702 (in Chinese with English Abstract)Google Scholar
  122. Zhang, Z. M., Ding, H. X., Dong, X., et al., 2019. Two Contrasting Eclogite Types in the Himalayan Orogen and Differential Subduction of Indian Continent. Earth Science, 44(5): 1602–1619.  https://doi.org/10.3799/dqkx.2019.040 (in Chinese with English Abstract)Google Scholar
  123. Zheng, Y. F., 2019. Subduction Zone Geochemistry. Geoscience Frontiers, 10(4): 1223–1254.  https://doi.org/10.1016/j.gsf.2019.02.003 CrossRefGoogle Scholar
  124. Zhou, W. D., Yang, J. S., Zhao, J. H., et al., 2015. Petrogenesis of Peridotites from the Purang Ophiolite in the Western Part of Yarlung Zangbo Suture Zone, Southern Tibet: A New Perspective. Geology in China, 42(5): 1354–1378 (in Chinese with English Abstract)Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary MineralsShandong University of Science and TechnologyQingdaoChina

Personalised recommendations