Journal of Earth Science

, Volume 31, Issue 1, pp 141–158 | Cite as

Petrogenesis, Tectonic Evolution and Geothermal Implications of Mesozoic Granites in the Huangshadong Geothermal Field, South China

  • Zhicai Xiao
  • Shuai Wang
  • Shihua QiEmail author
  • Jian Kuang
  • Min Zhang
  • Feng Tian
  • Yongjie Han
Environmental Geology and Geothermal


Mesozoic multi-stage tectono-magmatic events produced widely distributed granitoids in the South China Block. Huangshadong (HSD) is located in south-eastern South China Block, where closely spaced hot springs accompany outcrops of Mesozoic granites. New data on whole-rock geochemistry, zircon U-Pb geochronology, and zircon Lu-Hf isotopes are presented, to study the petrogenesis and tectonic evolution of the granites, and to explore the relationship between granites and geothermal anomalies. Zircon U-Pb isotopes display three periods of granites in the HSD area: Indosinian (ca. 253 Ma, G4) muscovite-bearing monzonitic granite, early Yanshanian (ca. 175-155 Ma, G5 and G3) monzonitic granite and granodiorite, and late Yanshanian (ca. 140 Ma, G1 and G2) biotite monzonitic granite. In petrogenetic type, granites of the three periods are I-type granite. Among them, G1, G2, G3, and G4 are characterized by high fractionation, with high values of SiO2, alkalis, Ga/Al, and Rb/Sr, and depletion in Sr, Ba, Zr, Nb, Ti, REEs, with low (La/Yb)N, Nb/Ta, and Zr/Hf ratios and negative Eu anomalies. In terms of tectonic setting, 253 Ma G4 may be the product of partial melting of the ancient lower crust under post-orogenic ex-tensional tectonics, as the closure of the Paleo-Tethys Ocean resulted in an intracontinental orogeny. At 175 Ma, the subduction of the Pacific Plate became the dominant tectonic system, and low-angle subduction of the Paleo-Pacific Plate facilitated partial melting of the subducted oceanic crust and basement to generate the hornblende-bearing I-type granodiorite. As the dip angle of the subducting plate increased, the continental arc tectonic setting was transformed to back-arc extension, inducing intense partial melting of the lower crust at ca. 158 Ma and resulting in the most frequent granitic magmatic activity in the South China hinterland. When slab foundering occurred at ca. 140 Ma, underplating of mantle-derived magmas caused melting of the continental crust, generating extensive highly fractionated granites in HSD. Combining the granitic evolution of HSD and adjacent areas and radioactive heat production rates, it is suggested that highly fractionated granites are connected to the enrichments in U and Th with magma evolution. The high radioactive heat derived from the Yanshanian granites is an important part of the crustal heat, which contributes significantly to the terrestrial heat flow. Drilling ZK8 reveals deep, ca. 140 Ma granite, which implies the heat source of the geothermal anomalies is mainly the concealed Yanshanian granites, combining the granite distribution on the surface.

Key words

radioactive heat Yanshanian granites highly fractionated geothermal genesis tectonic evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was financially supported by the China Geological Survey (No. 1212011220014). We deeply appreciate constructive comments and suggestions from Prof. Changqian Ma and other anonymous reviewers, which help us to improve the manuscript significantly. David A. Yuen, Balachandar Subramaniyan, Selvarajah Marimuthu and Jianhua Wang gave excellent guidance in the manuscript writing, Lanlan Jin assisted the element analyses. The final publication is available at Springer via

Supplementary material

12583_2019_1242_MOESM1_ESM.xlsx (52 kb)
Supplementary material, approximately 52.0 KB.

References Cited

  1. Arth, J. G., 1976. Behaviour of Trace Elements during Magmatic Processes - A Summary of Theoretical Models and Their Applications. Journal of Research of the U.S. Geological Survey, 4: 41–47Google Scholar
  2. Ballouard, C., Poujol, M., Boulvais, P., et al., 2016. Nb-Ta Fractionation in Peraluminous Granites: A Marker of the Magmatic-Hydrothermal Transition. Geology, 44(3): 231–234. Google Scholar
  3. Bao, Z. W., Zhao, Z. H., 2003. Geochemistry and Tectonic Setting of the Fugang Aluminous A-Type Granite, Guangdong Province, China-A Preliminary Study. Geology-Geochemistry, 31(1): 52–61 (in Chinese with English Abstract)Google Scholar
  4. Bau, M., 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 123(3): 323–333. Google Scholar
  5. Bea, F., 1996. Residence of REE, Y, Th and U in Granites and Crustal Protoliths: Implications for the Chemistry of Crustal Melts. Journal of Petrology, 37(3): 521–552. Google Scholar
  6. Bonnetti, C., Liu, X. D., Mercadier, J., et al., 2018. The Genesis of Granite-Related Hydrothermal Uranium Deposits in the Xiazhuang and Zhuguang Ore Fields, North Guangdong Province, SE China: Insights from Mineralogical, Trace Elements and U-Pb Isotopes Signatures of the U Mineralisation. Ore Geology Reviews, 92: 588–612. Google Scholar
  7. Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535–551. Google Scholar
  8. Chappell, B. W., Bryant, C. J., Wyborn, D., et al., 1998. High- and Low-Temperature I-Type Granites. Resource Geology, 48(4): 225–235. Google Scholar
  9. Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489–499. Google Scholar
  10. Chen, J. Y., Yang, J. H., 2015. Petrogenesis of the Fogang highly Fractionated I-Type Granitoids: Constraints from Nb, Ta, Zr and Hf. Acta Petrologica Sinica, 31: 846–854 (in Chinese with English Abstract)Google Scholar
  11. Chen, C. H., Lee, C. Y., Shinjo, R., 2008. Was there Jurassic Paleo-Pacific Subduction in South China? Constraints from 40Ar/39Ar Dating, Elemental and Sr-Nd-Pb Isotopic Geochemistry of the Mesozoic Basalts. Lithos, 106(1/2): 83–92. Google Scholar
  12. Chen, J. F., Jahn, B. M., 1998. Crustal Evolution of Southeastern China: Nd and Sr Isotopic Evidence. Tectonophysics, 284(1/2): 101–133. Google Scholar
  13. Chen, L., Zhao, Z. F., Zheng, Y. F., 2014. Origin of Andesitic Rocks: Geochemi-cal Constraints from Mesozoic Volcanics in the Luzong Basin, South China. Lithos, 190/191: 220–239. Google Scholar
  14. Deering, C. D., Bachmann, O., 2010. Trace Element Indicators of Crystal Accumulation in Silicic Igneous Rocks. Earth and Planetary Science Letters, 297(1/2): 324–331. Google Scholar
  15. Deng, J. F., Mo, X. X., Zhao, H. L., et al., 1999. The Yanshanian Lithosphere-Asthenosphere Catastrophe and Metallogenic Environment in East China. Mineral Deposits, 18(4): 309–311 (in Chinese with English Abstract)Google Scholar
  16. Dill, H. G., 2015. Pegmatites and Aplites: Their Genetic and Applied Ore Geology. Ore Geology Reviews, 69: 417–561. Google Scholar
  17. Ding, X., Hu, Y. H., Zhang, H., et al., 2013. Major Nb/Ta Fractionation Recorded in Garnet Amphibolite Facies Metagabbro. The Journal of Geology, 121(3): 255–274. Google Scholar
  18. Dostal, J., Kontak, D. J., Gerel, O., et al., 2015. Cretaceous Ongonites (Topaz-Bearing Albite-Rich Microleucogranites) from Ongon Khairkhan, Central Mongolia: Products of Extreme Magmatic Fractionation and Pervasive Metasomatic Fluid: Rock Interaction. Lithos, 236/237: 173–189. Google Scholar
  19. Frindt, S., Trumbull, R. B., Romer, R. L., 2004. Petrogenesis of the Gross Spitzkoppe Topaz Granite, Central Western Namibia: A Geochemical and Nd-Sr-Pb Isotope Study. Chemical Geology, 206(1/2): 43–71. Google Scholar
  20. Gao, P., Zheng, Y. F., Zhao, Z. F., 2016. Distinction between S-Type and Peralu-minous I-Type Granites: Zircon versus Whole-Rock Geochemistry. Lithos, 258/259: 77–91. Google Scholar
  21. Gelman, S. E., Deering, C. D., Bachmann, O., et al., 2014. Identifying the Crystal Graveyards Remaining after Large Silicic Eruptions. Earth and Planetary Science Letters, 403: 299–306. Google Scholar
  22. Gilder, S. A., Gill, J., Coe, R. S., et al., 1996. Isotopic and Paleomagnetic Constraints on the Mesozoic Tectonic Evolution of South China. Journal of Geophysical Research: Solid Earth, 101(B7): 16137–16154. Google Scholar
  23. Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3/4): 347–359. Google Scholar
  24. Gu, H. L., Yang, X. Y., Deng, J. H., et al., 2017. Geochemical and Zircon U-Pb Geochronological Study of the Yangshan A-Type Granite: Insights into the Geological Evolution in South Anhui, Eastern Jiangnan Orogen. Lithos, 284/285: 156–170. Google Scholar
  25. Guangdong Geological Bureau, 1982. Regional Hydrogeological Survey Report of the People’s Republic of China (1: 200 000 Huiyang F-50-(7)). Geological Publishing House, Beijing (in Chinese)Google Scholar
  26. Hacker, B. R., Ratschbacher, L., Webb, L., et al., 1998. U/Pb Zircon Ages Constrain the Architecture of the Ultrahigh-Pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters, 161(1/2/3/4): 215–230. Google Scholar
  27. Halliday, A. N., Davidson, J. P., Hildreth, W., et al., 1991. Modelling the Petrogenesis of High Rb/Sr Silicic Magmas. Chemical Geology, 92(1/2/3): 107–114. Google Scholar
  28. Hasterok, D., Chapman, D. S., 2011. Heat Production and Geotherms for the Continental Lithosphere. Earth and Planetary Science Letters, 307(1/2): 59–70. Google Scholar
  29. Hawkesworth, C. J., Kemp, A. I. S., 2006. Using Hafnium and Oxygen Isotopes in Zircons to Unravel the Record of Crustal Evolution. Chemical Geology, 226(3/4): 144–162. Google Scholar
  30. Hou, J. C., Cao, M. C., Liu, P. K., 2018. Development and Utilization of Geo-thermal Energy in China: Current Practices and Future Strategies. Renewable Energy, 125: 401–412. Google Scholar
  31. Hu, S. B., Wang, J. Y., 1994. Crustal Heat Generation Rate and Mantle Heat Flow in Southeastern China. Science in China (Series B), 24(2): 185–193 (in Chinese)Google Scholar
  32. Huang, J., Ren, J., Jiang, C., et al., 1980. The Geotectonic Evolution of China. Science Press, Beijing. 1–124 (in Chinese)Google Scholar
  33. Huang, J., Xiao, Y., Gao, Y., et al., 2012. Nb-Ta Fractionation Induced by Fluid-Rock Interaction in Subduction-Zones: Constraints from UHP Eclogite- and Vein-Hosted Rutile from the Dabie Orogen, Central-Eastern China. Journal of Metamorphic Geology, 30(8): 821–842. Google Scholar
  34. Huang, L. C., Jiang, S. Y., 2014. Highly Fractionated S-Type Granites from the Giant Dahutang Tungsten Deposit in Jiangnan Orogen, Southeast China: Geochronology, Petrogenesis and Their Relationship with W-Mineralization. Lithos, 202/203: 207–226. Google Scholar
  35. Huang, S. P., 2012. Geothermal Energy in China. Nature Climate Change, 2(8): 557–560. Google Scholar
  36. Huang, S. P., 2014. Opportunities and Challenges of Geothermal Energy Development in China. Energy of China, 36(9): 4–8, 16 (in Chinese with English Abstract)Google Scholar
  37. Jahn, B. M., 1974. Mesozoic Thermal Events in Southeast China. Nature, 248(5448): 480–483. Google Scholar
  38. Jahn, B. M., Wu, F. Y., Capdevila, R., et al., 2001. Highly Evolved Juvenile Granites with Tetrad REE Patterns: The Woduhe and Baerzhe Granites from the Great Xing?an Mountains in NE China. Lithos, 59(4): 171–198. Google Scholar
  39. Ji, W. B., Lin, W., Faure, M., et al., 2017. Origin of the Late Jurassic to Early Cretaceous Peraluminous Granitoids in the Northeastern Hunan Province (Middle Yangtze Region), South China: Geodynamic Implications for the Paleo-Pacific Subduction. Journal of Asian Earth Sciences, 141: 174–193. Google Scholar
  40. Jiang, S. H., Bagas, L., Hu, P., et al., 2016. Zircon U-Pb Ages and Sr-Nd-Hf Isotopes of the Highly Fractionated Granite with Tetrad REE Patterns in the Shamai Tungsten Deposit in Eastern Inner Mongolia, China: Implications for the Timing of Mineralization and Ore Genesis. Lithos, 261: 322–339. Google Scholar
  41. Jiang, X. Y., Luo, J. C., Guo, J., et al., 2018. Geochemistry of I- and A-Type Granites of the Qingyang-Jiuhuashan Complex, Eastern China: Insights into Early Cretaceous Multistage Magmatism. Lithos, 316/317: 278–294. Google Scholar
  42. Kelkar, S., WoldeGabriel, G., Rehfeldt, K., 2016. Lessons Learned from the Pioneering Hot Dry Rock Project at Fenton Hill, USA. Geothermics, 63: 5–14. Google Scholar
  43. Kinny, P. D., 2003. Lu-Hf and Sm-Nd Isotope Systems in Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327–341. Google Scholar
  44. Kostitsyn, Y. A., 2001. Sources of Rare Metals in Peraluminous Granites: A Review of Geochemical and Isotopic Data. Geochemistry International, 39: 43–59Google Scholar
  45. Li, J., Huang, X. L., 2013. Mechanism of Ta-Nb Enrichment and Magmatic Evolution in the Yashan Granites, Jiangxi Province, South China. Acta Petrologica Sinica, 29(12): 4311–4322 (in Chinese with English Abstract)Google Scholar
  46. Li, J. H., Zhang, Y. Q., Zhao, G. C., et al., 2017. New Insights into Phanerozoic Tectonics of South China: Early Paleozoic Sinistral and Triassic Dextral Transpression in the East Wuyishan and Chencai Domains, NE Cathaysia. Tectonics, 36(5): 819–853. Google Scholar
  47. Li, X. H., 2000. Cretaceous Magmatism and Lithospheric Extension in Southeast China. Journal of Asian Earth Sciences, 18(3): 293–305. Google Scholar
  48. Li, X. H., 1997. Timing of the Cathaysia Block Formation: Constraints from SHRIMP U-Pb Zircon Geochronology. Episodes, 20(3): 188–192Google Scholar
  49. Li, X. H., Li, W. X., Wang, X. C., et al., 2009. Role of Mantle-Derived Magma in Genesis of Early Yanshanian Granites in the Nanling Range, South China: In situ Zircon Hf-O Isotopic Constraints. Science in China Series D: Earth Sciences, 52(9): 1262–1278. Google Scholar
  50. Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?. Lithos, 96(1/2): 186–204. Google Scholar
  51. Li, Z. L., Zhou, J., Mao, J. R., et al., 2013. Zircon U-Pb Geochronology and Geochemistry of Two Episodes of Granitoids from the Northwestern Zhejiang Province, SE China: Implication for Magmatic Evolution and Tectonic Transition. Lithos, 179: 334–352. Google Scholar
  52. Li, Z. X., Li, X. H., 2007. Formation of the 1300-km-Wide Intracontinental Oro-gen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179–182. Google Scholar
  53. Lin, W. J., Gan, H. N., Wang, G. L., et al., 2016. Occurrence Prospect of HDR and Target Site Selection Study in Southeastern Coast of China. Acta Geologica Sinica, 90(8): 2043–2058 (in Chinese with English Abstract)Google Scholar
  54. Lin, W. J., Liu, Z. M., Wang, W. L., et al., 2013. The Assessment of Geo-thermal Resources Potential of China. Geology in China, 40: 312–321 (in Chinese with English Abstract)Google Scholar
  55. Lin, L. F., Sun, Z. D., Wang, D., et al., 2017. Radioactive Geochemistry of Mesozoic Granitic from Nanling Region and Southeast Coastal Region and Their Constraints on Lithospheric Thermal Structure. Acta Petrologica et Mineralogica, 36(4): 488–500 (in Chinese with English Abstract)Google Scholar
  56. Linnen, R. L., Keppler, H., 2002. Melt Composition Control of Zr/Hf Fractionation in Magmatic Processes. Geochimica et Cosmochimica Acta, 66(18): 3293–3301. Google Scholar
  57. Liu, S. A., Li, S. G., He, Y. S., et al., 2010. Geochemical Contrasts between Early Cretaceous Ore-Bearing and Ore-Barren High-Mg Adakites in Central-Eastern China: Implications for Petrogenesis and Cu-Au Mineralization. Geochimica et Cosmochimica Acta, 74(24): 7160–7178. Google Scholar
  58. Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. Google Scholar
  59. Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. Google Scholar
  60. London, D., Evensen, J. M., 2002. Beryllium in Silicic Magmas and the Origin of Beryl-Bearing Pegmatites. Reviews in Mineralogy and Geochemistry, 50(1): 445–486. Google Scholar
  61. Lu, S. M., 2018. A Global Review of Enhanced Geothermal System (EGS). Renewable and Sustainable Energy Reviews, 81: 2902–2921. Google Scholar
  62. Lund, J. W., 2008. Development and Utilization of Geothermal Resources. Episodes, 31(1): 140–147Google Scholar
  63. Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643.;2 Google Scholar
  64. Mao, J. R., Li, Z. L., Ye, H. M., 2014. Mesozoic Tectono-Magmatic Activities in South China: Retrospect and Prospect. Science China Earth Sciences, 57(12): 2853–2877. Scholar
  65. Mao, X. P., Wang, X. W., Li, K. W., et al., 2018. Sources of Heat and Control Factors in Geothermal Field. Earth Science, 43(11): 4256–4266 (in Chinese with English Abstract)Google Scholar
  66. McLaren, S., Sandiford, M., Powell, R., et al., 2006. Palaeozoic Intraplate Crustal Anatexis in the Mount Painter Province, South Australia: Timing, Thermal Budgets and the Role of Crustal Heat Production. Journal of Petrology, 47(12): 2281–2302. Google Scholar
  67. Merino, E., Villaseca, C., Orejana, D., et al., 2013. Gahnite, Chrysoberyl and Beryl Co-occurrence as Accessory Minerals in a Highly Evolved Peralumi-nous Pluton: The Belvís de Monroy Leucogranite (Cáceres, Spain). Lithos, 179: 137–156. Google Scholar
  68. Pearce, J. A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19: 120–125Google Scholar
  69. Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983. Google Scholar
  70. Peccerillo, A., Taylor, S. R., 1976. Rare Earth Elements in East Carpathian Volcanic Rocks. Earth and Planetary Science Letters, 32(2): 121–126. Google Scholar
  71. Pérez-Soba, C., Villaseca, C., 2010. Petrogenesis of highly Fractionated I-Type Peraluminous Granites: La Pedriza Pluton (Spanish Central System). Geologica Acta, 8: 131–149Google Scholar
  72. Qi, C. S., Deng, X. G., Li, W. X., et al., 2007. Origin of the Darongshan-Shiwandashan S-Type Granitoid Belt from Southeastern Guangxi: Geochemical and Sr-Nd-Hf Isotopic Constraints. Acta Petrologica Sinica, 2: 403–412 (in Chinese with English Abstract)Google Scholar
  73. Regenauer-Lieb, K., Yuen, D. A., Qi, S. H., et al., 2015. Foreword: Toward a Quantitative Understanding of the Frontier in Geothermal Energy. Journal of Earth Science, 26(1): 1–4. Google Scholar
  74. Ren, J. S., 1990. On the Geotectonics of Southern China. Acta Geologica Sinica, 65(4): 275–288 (in Chinese with English Abstract)Google Scholar
  75. Rybach, L., 1976. Radioactive Heat Production in Rocks and Its Relation to other Petrophysical Parameters. Pure and Applied Geophysics, 114(2): 309–317. Google Scholar
  76. Rybach, L., 1988. Determination of Heat Production Rate. In: Haenel, R., Rybach, L., Stegena, L., eds., Handbook of Terrestrial Heat Flow Density. Kluwer Academic Publishers}, Holland. 125–142Google Scholar
  77. Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035–1053 (in Chinese with English Abstract)Google Scholar
  78. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. Google Scholar
  79. Sun, T., 2006. A New Map Showing the Distribution of Granites in South China and Its Explanatory Notes. Geological Bulletin of China, 25(3): 332–335 (in Chinese with English Abstract)Google Scholar
  80. Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1/2/3/4): 29–44. Google Scholar
  81. Tao, J. H., Li, W. X., Li, X. H., et al., 2013. Petrogenesis of Early Yansha-nian Highly Evolved Granites in the Longyuanba Area, Southern Jiangxi Province: Evidence from Zircon U-Pb Dating, Hf-O Isotope and Whole-Rock Geochemistry. Science China Earth Sciences, 56(6): 922–939. Scholar
  82. Teixeira, R. J. S., Neiva, A. M. R., Silva, P. B., et al., 2011. Combined U-Pb Geochronology and Lu-Hf Isotope Systematics by LAM-ICPMS of Zircons from Granites and Metasedimentary Rocks of Carrazeda de Ansiães and Sabugal Areas, Portugal, to Constrain Granite Sources. Lithos, 125(1/2): 321–334. Google Scholar
  83. Wang, D. Z., 2004. The Study of Granite Rocks in South China: Looking back and forward. Geological Journal of China Universities, 10(3): 305–314 (in Chinese with English Abstract)Google Scholar
  84. Wang, D. Z., Shen, W. Z., 2003. The Genesis of Granites and Crustal Evolution in Southeast of China. Earth Science Frontiers, 10(3): 209–220 (in Chinese with English Abstract)Google Scholar
  85. Wang, D. Z., Zhou, X. M., 2002. Crustal Evolution and Petrogenesis of Late Mesozoic Granitic Volcanic-Intrusive Complexes in Southeastern China. Science Press, Beijing (in Chinese)Google Scholar
  86. Wang, G. L., Zhang, W., Liang, J. Y., et al., 2017. Evaluation of Geothermal Resources Potential in China. Acta Geoscientica Sinica, 38(4): 448–459 (in Chinese with English Abstract)Google Scholar
  87. Wang, L. X., Ma, C. Q., Zhang, C., et al., 2018. Halogen Geochemistry of I-and A-Type Granites from Jiuhuashan Region (South China): Insights into the Elevated Fluorine in A-Type Granite. Chemical Geology, 478: 164–182. Google Scholar
  88. Wang, L. X., Ma, C. Q., Zhang, C., et al., 2014. Genesis of Leucogranite by Prolonged Fractional Crystallization: A Case Study of the Mufushan Complex, South China. Lithos, 206/207: 147–163. Google Scholar
  89. Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273–1305. Google Scholar
  90. Wang, Y. J., Wu, C. M., Zhang, A. M., et al., 2012. Kwangsian and Indosinian Reworking of the Eastern South China Block: Constraints on Zircon U-Pb Geochronology and Metamorphism of Amphibolites and Granulites. Lithos, 150: 227–242. Google Scholar
  91. Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemi-cal Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. Google Scholar
  92. Whalen, J. B., Jenner, G. A., Longstaffe, F. J., et al., 1996. Geochemical and Isotopic (O, Nd, Pb and Sr) Constraints on A-Type Granite Petrogenesis Based on the Topsails Igneous Suite, Newfoundland Appalachians. Journal of Petrology, 37(6): 1463–1489. Google Scholar
  93. Wu, F. Y., Ji, W. Q., Sun, D. H., et al., 2012. Zircon U-Pb Geochronology and Hf Isotopic Compositions of the Mesozoic Granites in Southern Anhui Province, China. Lithos, 150: 6–25. Google Scholar
  94. Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185–220 (in Chinese with English Abstract)Google Scholar
  95. Wu, F. Y., Lin, J. Q., Wilde, S. A., et al., 2005. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1/2): 103–119. Google Scholar
  96. Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China Earth Sciences, 60(7): 1201–1219. Google Scholar
  97. Xi, Y. F., Zhao, Y. B., David, A. Y., et al., 2018. Geothermal Structure Revealed by Curie Isothermal Surface under Guangdong Province, China. Journal of Earth Science. Google Scholar
  98. Xie, Y. S., Tan, K. X., Tang, Z. P., et al., 2014. Tectono-Magmatic Activization and Fractal Dynamics of Ore-Forming of Hydrothermal Uranium Deposits in South China. Acta Geologica Sinica-English Edition, 88(Suppl. 2): 1695–1696. Google Scholar
  99. Xu, T. F., Hu, Z. X., Li, S. T., et al., 2018. Enhanced Geothermal System: International Research Progress and Research Status of China. Acta Geologica Sinica, 92: 1936–1947 (in Chinese with English Abstract)Google Scholar
  100. Yan, C. L., Shu, L. S., Michel, F., et al., 2017. Early Paleozoic Intracontinental Orogeny in the Yunkai Domain, South China Block: New Insights from Field Observations, Zircon U-Pb Geochronological and Geochemical Investigations. Lithos, 268/271: 320–333. Google Scholar
  101. Yan, J., Liu, J. M., Li, Q. Z., et al., 2015. In situ Zircon Hf-O Isotopic Analyses of Late Mesozoic Magmatic Rocks in the Lower Yangtze River Belt, Central Eastern China: Implications for Petrogenesis and Geodynamic Evolution. Lithos, 227: 57–76. Google Scholar
  102. Yang, J. H., Liu, L., Liu, J., 2017. Current Progresses and Prospect for Genesis of Extensive Mesozoic Granitoid and Granitoid-Related Multi-Metal Mineralization in Southern China. Acta Mineralogica Sinica, 37: 791–800 (in Chinese with English Abstract)Google Scholar
  103. Yang, X. Y., Sun, W. D., 2018. Jurassic and Cretaceous (Yanshannian) Tectonics, Magmatism and Metallogenesis in South China: Preface. International Geology Review, 60(11/12/13/14): 1321–1325. Google Scholar
  104. Yuan, Y. S., Ma, Y. S., Hu, S. B., et al., 2006. Present-Day Geothermal Characteristics in South China. Chinese Journal of Geophysics, 49(4): 1005–1014. Google Scholar
  105. Yurimoto, H., Duke, E. F., Papike, J. J., et al., 1990. Are Discontinuous Chondrite-Normalized REE Patterns in Pegmatitic Granite Systems the Results of Monazite Fractionation?. Geochimica et Cosmochimica Acta, 54(7): 2141–2145. Google Scholar
  106. Zen, E. A., 1986. Aluminum Enrichment in Silicate Melts by Fractional Crystallization: Some Mineralogic and Petrographic Constraints. Journal of Petrology, 27(5): 1095–1117. Google Scholar
  107. Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. Tectonics of South China Continent and Its Implications. Science China Earth Sciences, 56(11): 1804–1828. Scholar
  108. Zhang, L., Chen, Z. Y., Li, S. R., et al., 2017. Isotope Geochronology, Geochemistry, and Mineral Chemistry of the U-Bearing and Barren Granites from the Zhuguangshan Complex, South China: Implications for Petrogenesis and Uranium Mineralization. Ore Geology Reviews, 91: 1040–1065. Google Scholar
  109. Zhang, L., Chen, Z. Y., Li, X. F., et al., 2018. Zircon U-Pb Geochronology and Geochemistry of Granites in the Zhuguangshan Complex, South China: Implications for Uranium Mineralization. Lithos, 308/309: 19–33. Google Scholar
  110. Zhang, X. B., Hu, Q. H., 2018. Development of Geothermal Resources in China: A Review. Journal of Earth Science, 29(2): 452–467. Google Scholar
  111. Zhao, Z. H., Akimasa, M., Shabani, M. B., 1992. Tetrad Effects of Rare-Earth Elements in Rare-Metal Granites. Acta Geochimica, 3: 221–233 (in Chinese with English Abstract)Google Scholar
  112. Zhao, J. L., Qiu, J. S., Liu, L., et al., 2016. The Late Cretaceous I- and A-Type Granite Association of Southeast China: Implications for the Origin and Evolution of Post-Collisional Extensional Magmatism. Lithos, 240-243: 16–33. Google Scholar
  113. Zhao, P., Wang, J. Y., Wang, J. A., et al., 1995. Characteristics of Heat Production in SE China. Acta Petrologica Sinica, 11(3): 292–303 (in Chinese with English Abstract)Google Scholar
  114. Zhao, Z. F., Zheng, Y. F., 2009. Remelting of Subducted Continental Lithosphere: Petrogenesis of Mesozoic Magmatic Rocks in the Dabie-Sulu Orogenic Belt. Science in China Series D: Earth Sciences, 52(9): 1295–1318. Google Scholar
  115. Zheng, Y. F., Xiao, W. J., Zhao, G. C., 2013. Introduction to Tectonics of China. Gondwana Research, 23(4): 1189–1206. Google Scholar
  116. Zheng, Y. F., Zhang, L. F., McClelland, W. C., et al., 2012. Processes in Continental Collision Zones: Preface. Lithos, 136-139: 1–9. Google Scholar
  117. Zhou, X. M., 2003. My Thinking about Granite Geneses of South China. Geological Journal of China Universities, 9: 556–565 (in Chinese with English Abstract)Google Scholar
  118. Zhou, X. M., Li, W. X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Un-derplating of Mafic Magmas. Tectonophysics, 326(3/4): 269–287. Google Scholar
  119. Zhou, X. M., Sun, T., Shen, W. Z., et al. 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29: 26–33Google Scholar
  120. Zhou, Z. M., Ma, C. Q., Xie, C. F., et al., 2016. Genesis of Highly Fractionated I-Type Granites from Fengshun Complex: Implications to Tectonic Evolutions of South China. Journal of Earth Science, 27(3): 444–460. Google Scholar
  121. Zhu, J. L., Hu, K. Y., Lu, X. L., et al., 2015. A Review of Geothermal Energy Resources, Development, and Applications in China: Current Status and Prospects. Energy, 93: 466–483. Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesWuhanChina
  2. 2.School of Environmental StudiesChina University of GeosciencesWuhanChina
  3. 3.No. 935 Geological BrigadeGeology Bureau for Nonferrous Metals of Guangdong ProvinceHuizhouChina

Personalised recommendations