Advertisement

Remote Detection of Hydrocarbon Microseepage in a Loess Covered Area

  • Liang ZhaoEmail author
  • Daming Wang
  • Shengbo Chen
  • Lin Li
  • Tianyu Zhang
Article
  • 3 Downloads

Abstract

Hydrocarbon microseepage can result in related near-surface mineral alterations. In this study, we evaluated the potential of detecting these alterations with field measured and satellite acquired hyperspectral data. Fourteen soil samples and reflectance spectra were collected in the Xifeng Oilfield, a loess covered area. Soil samples were analyzed in the laboratory for calcite, dolomite, kaolinite, illite, and mixedlayer illite/smectite content, and we processed reflectance spectra for continuum removal to derive clay and carbonate mineral absorption depth (H). High correlation between absorption depth and mineral content was shown for clay and mineral carbonate with field measured spectra. Based on the result for the field spectra, we proposed and tested a fast index based on the absorption depth of clay and carbonate minerals with a hyperspectral image of the area. The detected hydrocarbon microseepage anomalies matched well with those shown in the geological map.

Key Words

hyperspectral remote sensing hydrocarbon microseepage spectrum absorption parameters multiple regression analysis fast index geochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This paper was supported by the National Natural Science Foundation of China (No. 41402293) and the GF-5 Satellite Hyperspectral Porphyry Deposit Alteration Information Intelligent Identification Technology Program (No. 04-Y20A35-9001- 15/17-4). The final publication is available at Springer via publication is available at Springer via  https://doi.org/10.1007/s12583-019-1235-8.

References Cited

  1. Almeida-Filho, R., Miranda, F. P., Yamakawa, T., 1999. Remote Detection of a Tonal Anomaly in an Area of Hydrocarbon Microseepage, Tucano Basin, North-Eastern Brazil. International Journal of Remote Sensing, 20(13): 2683–2688.  https://doi.org/10.1080/014311699212029 CrossRefGoogle Scholar
  2. Chen, S. B., Zhao, Y., Zhao, L., et al., 2017. Hydrocarbon Micro-Seepage Detection by Altered Minerals Mapping from Airborne Hyper-Spectral Data in Xifeng Oilfield, China. Journal of Earth Science, 28(4): 656–665.  https://doi.org/10.1007/s12583-015-0604-1 CrossRefGoogle Scholar
  3. Ding, X., Wang, Y. P., He, Z. C., 1993. The Application Research of Satellite Remote Sensing to Exploration of Hydrocarbon Alteration Information. Chinese Science Bulletin, 38(17): 1475–1479 (in Chinese)Google Scholar
  4. Dou, W. C., Liu, L. F., Wu, K. J., et al., 2017. Origin and Significance of Secondary Porosity: A Case Study of Upper Triassic Tight Sandstones of Yanchang Formation in Ordos Basin, China. Journal of Petroleum Science and Engineering, 149: 485–496.  https://doi.org/10.1016/j.petrol.2016.10.057 CrossRefGoogle Scholar
  5. Galvão, L. S., Formaggio, A. R., Couto, E. G., et al., 2008. Relationships between the Mineralogical and Chemical Composition of Tropical Soils and Topography from Hyperspectral Remote Sensing Data. ISPRS Journal of Photogrammetry and Remote Sensing, 63(2): 259–271.  https://doi.org/10.1016/j.isprsjprs.2007.09.006 CrossRefGoogle Scholar
  6. Gemail, K., Abd-El Rahman, N. M., Ghiath, B. M., et al., 2016. Integration of ASTER and Airborne Geophysical Data for Mineral Exploration and Environmental Mapping: A Case Study, Gabal Dara, North Eastern Desert, Egypt. Environmental Earth Sciences, 75(7): 1–12.  https://doi.org/10.1007/s12665-016-5368-0 CrossRefGoogle Scholar
  7. He, Z. L., Deng, X. L., Ai, S. M., 2014. Hydrocarbon Micro-Seepage Anomalies Detection Algorithm Based on FPCS for Hyperspectral Remote Sensing Data. Applied Mechanics and Materials, 596: 457–462.  https://doi.org/10.4028/www.scientific.net/amm.596.457 CrossRefGoogle Scholar
  8. Hörig, B., Kühn, F., Oschütz, F., et al., 2001. HyMap Hyperspectral Remote Sensing to Detect Hydrocarbons. International Journal of Remote Sensing, 22(8): 1413–1422.  https://doi.org/10.1080/01431160010013450 CrossRefGoogle Scholar
  9. Hou, F., Wang, D., Cai, Y., et al., 2011. The Abnormal Information Extraction of the Hydrocarbon Micro-Seepage Based on the Hyperspectral Image. Proceedings of 2011 19th International Conference on Geoinformatics, Shanghai. 1–4Google Scholar
  10. Huang, Z. Q., Yao, Z. X., Cheng, M. H., 2014. Lithologic Anomaly Identification of Hydrocarbon Microseepages in Kelasu Fold-and-Thrust Belt, West China Using ASTER Imagery. Geoscience and Remote Sensing Symposium IEEE, Québec. 863–866  https://doi.org/10.1109/igarss.2014.6946561 Google Scholar
  11. Kruse, F. A., Boardman, J. W., Huntington, J. F., 2003. Comparison of Airborne Hyperspectral Data and Eo-1 Hyperion for Mineral Mapping. IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1388–1400.  https://doi.org/10.1109/tgrs.2003.812908 CrossRefGoogle Scholar
  12. Kühn, F., Oppermann, K., Hörig, B., 2004. Hydrocarbon Index—An Algorithm for Hyperspectral Detection of Hydrocarbons. International Journal of Remote Sensing, 25(12): 2467–2473.  https://doi.org/10.1080/01431160310001642287 CrossRefGoogle Scholar
  13. Lammoglia, T., de Souza Filho, C. R., 2011. Spectroscopic Characterization of Oils Yielded from Brazilian Offshore Basins: Potential Applications of Remote Sensing. Remote Sensing of Environment, 115(10): 2525–2535.  https://doi.org/10.1016/j.rse.2011.04.038 CrossRefGoogle Scholar
  14. Lammoglia, T., de Souza Filho, C. R., 2013. Unraveling Hydrocarbon Microseepages in Onshore Basins Using Spectral-Spatial Processing of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data. Surveys in Geophysics, 34(3): 349–373.  https://doi.org/10.1007/s10712-013-9225-3 CrossRefGoogle Scholar
  15. Liu, N., Chen, X., Li, Q. Q., 2014. Study on the Alteration Minerals Caused by Oil and Gas Microseepage by Extracting Endmembers from Hyperion. IEEE International Geoscience and Remote Sensing Symposium, Quebec City.  https://doi.org/10.1109/igarss.2014.6946563 Google Scholar
  16. Petrovic, A., Khan, S. D., Thurmond, A. K., 2012. Integrated Hyperspectral Remote Sensing, Geochemical and Isotopic Studies for Understanding Hydrocarbon-Induced Rock Alterations. Marine and Petroleum Geology, 35(1): 292–308.  https://doi.org/10.1016/j.marpetgeo.2012.01.004 CrossRefGoogle Scholar
  17. Pour, A. B., Hashim, M., Park, Y., et al., 2017. Mapping Alteration Mineral Zones and Lithological Units in Antarctic Regions Using Spectral Bands of ASTER Remote Sensing Data. Geocarto International, 33(12): 1281–1306.  https://doi.org/10.1080/10106049.2017.1347207 CrossRefGoogle Scholar
  18. Post, J. L., Crawford, S. M., 2014. Uses of Near-Infared Spectra for the Identification of Clay Minerals. Applied Clay Science, 95: 383–387.  https://doi.org/10.1016/j.clay.2014.02.010 CrossRefGoogle Scholar
  19. Schaepman, M. E., Ustin, S. L., Plaza, A. J., et al., 2009. Earth System Science Related Imaging Spectroscopy-An Assessment. Remote Sensing of Environment, 113: S123–S137.  https://doi.org/10.1016/j.rse.2009.03.001 CrossRefGoogle Scholar
  20. Shi, P. L., Fu, B. H., Ninomiya, Y., et al., 2012. Multispectral Remote Sensing Mapping for Hydrocarbon Seepage-Induced Lithologic Anomalies in the Kuqa Foreland Basin, South Tian Shan. Journal of Asian Earth Sciences, 46: 70–77.  https://doi.org/10.1016/j.jseaes.2011.10.019 CrossRefGoogle Scholar
  21. Tian, Q., 2012. Study on Oil-Gas Reservoir Detecting Methods Using Hyperspectral Remote Sensing. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIXB7: 157–162.  https://doi.org/10.5194/isprsarchives-xxxix-b7-157-2012 CrossRefGoogle Scholar
  22. van der Meer, F., van Dijk, P., van der Werff, H., et al., 2002. Remote Sensing and Petroleum Seepage: A Review and Case Study. Terra Nova, 14(1): 1–17.  https://doi.org/10.1046/j.1365-3121.2002.00390.x CrossRefGoogle Scholar
  23. van der Meer, F., 2004. Analysis of Spectral Absorption Features in Hyperspectral Imagery. International Journal of Applied Earth Observation and Geoinformation, 5(1): 55–68.  https://doi.org/10.1016/j.jag.2003.09.001 CrossRefGoogle Scholar
  24. van der Meijde, M., Knox, N. M., Cundill, S. L., et al., 2013. Detection of Hydrocarbons in Clay Soils: A Laboratory Experiment Using Spectroscopy in the Mid- And Thermal Infrared. International Journal of Applied Earth Observation and Geoinformation, 23: 384–388.  https://doi.org/10.1016/j.jag.2012.11.001 CrossRefGoogle Scholar
  25. van der Meer, F. D., van der Werff, H. M. A., van Ruitenbeek, F. J. A., et al., 2012. Multi- And Hyperspectral Geologic Remote Sensing: A Review. International Journal of Applied Earth Observation and Geoinformation, 14(1): 112–128.  https://doi.org/10.1016/j.jag.2011.08.002 CrossRefGoogle Scholar
  26. Wu, X. Y., Xu, X. M., Wu, C. F., et al., 2014. Responses of Microbial Communities to Light-Hydrocarbon Microseepage and Novel Indicators for Microbial Prospecting of Oil/Gas in the Beihanzhuang Oilfield, Northern Jiangsu, China. Geomicrobiology Journal, 31(8): 697–707.  https://doi.org/10.1080/01490451.2013.843619 CrossRefGoogle Scholar
  27. Xu, D. Q., Ni, G. Q., Jiang, L. L., et al., 2008. Exploring for Natural Gas Using Reflectance Spectra of Surface Soils. Advances in Space Research, 41(11): 1800–1817.  https://doi.org/10.1016/j.asr.2007.05.073 CrossRefGoogle Scholar
  28. Xu, N., Hu, Y. X., Lei, B., et al., 2011. Mineral Information Extraction for Hyperspectral Image Based on Modified Spectral Feature Fitting Algorithm. Spectroscopy and Spectral Analysis, 31: 1639–1643 (in Chinese with English Abstract)Google Scholar
  29. Yang, H., Zhang, J., van der Meer, F., et al., 1998. Geochemistry and Field Spectrometry for Detecting Hydrocarbon Microseepage. Terra Nova, 10(5): 231–235.  https://doi.org/10.1046/j.1365-3121.1998.00196.x CrossRefGoogle Scholar
  30. Zhang, C. Y., Qin, Q. M., Chen, L., et al., 2015. Rapid Determination of Coalbed Methane Exploration Target Region Utilizing Hyperspectral Remote Sensing. International Journal of Coal Geology, 150–151: 19–34.  https://doi.org/10.1016/j.coal.2015.07.010 CrossRefGoogle Scholar
  31. Zhao, H., Zhang, L., Zhang, X., et al., 2015. Hyperspectral Feature Extraction Based on the Reference Spectral Background Removal Method. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6): 1–15.  https://doi.org/10.1109/jstars.2015.2401052 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Geo-Exploration Science and TechnologyJilin UniversityChangchunChina
  2. 2.Division of Petroleum GeologyChina Geological SurveyBeijingChina
  3. 3.Department of Earth SciencesIndiana University-Purdue University IndianapolisIndianapolisUSA
  4. 4.College of Earth ScienceJilin UniversityChangchunChina

Personalised recommendations