Advertisement

Journal of Earth Science

, Volume 30, Issue 5, pp 1010–1019 | Cite as

Spatial Distribution Prediction of Laterite Bauxite in Bolaven Plateau Using GIS

  • Yuan Ouyang
  • Hanhu LiuEmail author
  • Xiao Wang
  • Shusheng Liu
  • Jinghua Zhang
  • Hui Gao
Seismology, Mathematical and Remote Sensing Geology
  • 29 Downloads

Abstract

Mineral resources are the most important natural resources for developing countries. Bauxite is an indispensable mineral resource for industrial production. Potential assessment of bauxite is an important issue in Indochina Peninsula. In this paper, the factors affecting the mineralization of the lateritic bauxite are analyzed. The collected spatial data are processed and the information is extracted to obtain the spatial extent of favorable constraints. Then, the spatial distribution of potential bauxites on the Bolaven Plateau has been investigated with a Boolean modeling process in GIS environment on the basis of some constraints such as rock, elevation, topographical features and vegetation coverage. Finally, based on the hydrogeological conditions and alteration information of Fe3+ and OH-, the bauxite mapping has been carried out. There are twenty bauxite metallogenic areas delineated, with a total area of 750 km2, which is 5% of the entire study area. This has greatly reduced the scope of the field investigation. Seven of the twenty predicted areas were validated in the field and six of them were found to have bauxite mineralization. Using the methods proposed in this study, the potential bauxite for the entire Bolaven Plateau could be achieved much more cheaply than the traditional methods. This study also provides a good idea for the prediction of laterite bauxite in the other regions of the Indochina Peninsula.

Key words

Bolaven Plateau GIS laterite bauxite Boolean model geochemistry remote sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the China Geological Survey (No. 121201010000150013) and the National Natural Science Foundation of China (No. 41102225). The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1234-9.

References Cited

  1. Agterberg, F. P., Bonhmn-Carter, G. F., Wright, D. F., 1990. Statistical Pattern Integration for Mineral Exploration. In: Gaál, G., Merriam, D. F., eds., Computer Applications in Resource Estimation, Pergamum Press, Oxford. 1–21Google Scholar
  2. Agterberg, F. P., 1994. Fractals, Multifractals and Change of Support: Geostatistics for the Next Century. Springer, Dordrecht.  https://doi.org/10.1007/978-94-011-0824-9_27 Google Scholar
  3. Ali, A. S. O., Pour, A. B., 2014. Lithological Mapping and Hydrothermal Alteration Using Landsat 8 Data: A Case Study in Ariab Mining District, Red Sea Hills, Sudan. International Journal of Basic and Applied Sciences, 3(3): 199–208.  https://doi.org/10.14419/ijbas.v3i3.2821 Google Scholar
  4. Bardossy, G., 1982. Karst Bauxites: Bauxite Deposits on Carbonate Rock. Developments in Economic Geology, 14: 441Google Scholar
  5. Bogatyrev, B. A., Zhukov, V. V., Tsekhovsky, Y. G., 2009. Formation Conditions and Regularities of the Distribution of Large and Superlarge Bauxite Deposits. Lithology and Mineral Resources, 44(2): 135–151.  https://doi.org/10.1134/s0024490209020035 Google Scholar
  6. Boroushaki, S., Malczewski, J., 2008. Implementing an Extension of the Analytical Hierarchy Process Using Ordered Weighted Averaging Operators with Fuzzy Quantifiers in ArcGIS. Computers & Geosciences, 34(4): 399–410.  https://doi.org/10.1016/j.cageo.2007.04.003 Google Scholar
  7. Carranza, E. J. M., Mangaoang, J. C., Hale, M., 1999. Application of Mineral Exploration Models and GIS to Generate Mineral Potential Maps as Input for Optimum Land-Use Planning in the Philippines. Natural Resources Research, 8(2): 165–173Google Scholar
  8. Chelgani, C. S., Jorjani, E., 2009. Artificial Neural Network Prediction of Al2O3 Leaching Recovery in the Bayer Process-Jajarm Alumina Plant (Iran). Hydrometallurgy, 97(1/2): 105–110.  https://doi.org/10.1016/j.hydromet.2009.01.008 Google Scholar
  9. Cheng, C., Thompson, R. G., 2016. Application of Boolean Logic and GIS for Determining Suitable Locations for Temporary Disaster Waste Management Sites. International Journal of Disaster Risk Reduction, 20: 78–92.  https://doi.org/10.1016/j.ijdrr.2016.10.011 Google Scholar
  10. Cheng. G., Gao, G. M., Cheng. S. L., 2008. Geological Characteristics and Metallogenic Regularity of Bauxite in Bolaven Plateau, Laos. Journal of Central South University (Natural Science), 39(2): 380–386 (in Chinese with English Abstract)Google Scholar
  11. Cheng, W., Xu, S. T., Shen, Z. G., et al., 2012. Geological Characteristics and Exploration and Development Progress of Lateritic Bauxite in Southern Laos. Henan Earth Science Bulletin, 81–93 (in Chinese with English Abstract)Google Scholar
  12. Clark, R. N., Roush, T. L., 1984. Reflectance Spectroscopy: Quantitative Analysis Techniques for Remote Sensing Applications. Journal of Geophysical Research: Solid Earth, 89(B7): 6329–6340.  https://doi.org/10.1029/jb089ib07p06329 Google Scholar
  13. Costa, M. L. D., Cruz, G. D. S., Almeida, H. D. F. D., et al., 2014. On the Geology, Mineralogy and Geochemistry of the Bauxite-Bearing Regolith in the Lower Amazon Basin: Evidence of Genetic Relationships. Journal of Geochemical Exploration, 146: 58–74.  https://doi.org/10.1016/j.gexplo.2014.07.021 Google Scholar
  14. Chen, S. B., Zhao, Y., Zhao, L., et al., 2017. Hydrocarbon Micro-Seepage Detection by Altered Minerals Mapping from Airborne Hyper-Spectral Data in Xifeng Oilfield, China. Journal of Earth Science, 28(4): 656–665.  https://doi.org/10.1007/s12583-015-0604-1 Google Scholar
  15. D’Argenio, B., Mindszenty, A., 1995. Bauxites and Related Paleokarst: Tectonic and Climatic Event Markers at Regional Unconformities. Eclogae-Geologicae Helvetiae, 88(3): 453–499Google Scholar
  16. Diao, C. C., 2014. Analysis of the Causes of Bauxite Deposit in Boloven Plateau of Paksong Region in Laos. Geology and Resource, 23(4): 414–417 (in Chinese with English Abstract)Google Scholar
  17. Ebbing, J., Hella, L., Lohmann, P., et al., 2017. Boolean Dependence Logic and Partially-Ordered Connectives. Journal of Computer and System Sciences, 88: 103–125.  https://doi.org/10.1016/j.jcss.2017.03.009 Google Scholar
  18. Esmaeily, D., Rahimpour-Bonab, H., Esna-Ashari, A., et al., 2014. Petrography and Geochemistry of the Jajarm Karst Bauxite Ore Deposit, NE Iran: Implications for Source Rock Material and Ore Genesis. Turkish Journal of Earth Sciences, 19(2): 267–284Google Scholar
  19. Fan, P. F., 2000. Accreted Terranes and Mineral Deposits of Indochina. Journal of Asian Earth Sciences, 18(3): 343–350.  https://doi.org/10.1016/s1367-9120(99)00061-9 Google Scholar
  20. Gao, G. M., Zhou, L. X., Huang, B. H., 2007. Remote Sensing Image Features and Information Extraction of Bolaven Plateau Lateritic Bauxite. Information Technology and Informatization, 3: 73–75 (in Chinese with English Abstract)Google Scholar
  21. Guha, A., Singh, V. K., Parveen, R., et al., 2013. Analysis of ASTER Data for Mapping Bauxite Rich Pockets within High Altitude Lateritic Bauxite, Jharkhand, India. International Journal of Applied Earth Observation and Geoinformation, 21: 184–194.  https://doi.org/10.1016/j.jag.2012.08.003 Google Scholar
  22. Han, T., Nelson, J., 2015. Mapping Hydrothermally Altered Rocks with Landsat 8 Imagery: A Case Study in the KSM and Snowfi Eld Zones, Northwestern British Columbia. British Columbia Geological Survey Paper, 1: 103–112Google Scholar
  23. Hanilçi, N., 2013. Geological and Geochemical Evolution of the Bolkardaği Bauxite Deposits, Karaman, Turkey: Transformation from Shale to Bauxite. Journal of Geochemical Exploration, 133: 118–137.  https://doi.org/10.1016/j.gexplo.2013.04.004 Google Scholar
  24. Hill, I. G., Worden, R. H., Meighan, I. G., 2000. Geochemical Evolution of a Palaeolaterite: The Interbasaltic Formation, Northern Ireland. Chemical Geology, 166(1/2): 65–84.  https://doi.org/10.1016/s0009-2541(99)00179-5 Google Scholar
  25. Hu, J. B., 2006. Extraction of Remote Sensing Prospecting Information and Evaluation of Lateritic Bauxite Resources in Bolaven Plateau, Laos [Dissertation]. Central South University, Changsha (in Chinese with English Abstract)Google Scholar
  26. Hu, J. B., Gao, G. M., 2008. Analysis of Metallogenic Control Factors of Bolaven Plateau Lateritic Bauxite in Laos. Science and Technology Innovation Herald, 30: 16–17 (in Chinese with English Abstract)Google Scholar
  27. Jia, K. H., 2011. Geological and Mineral Characteristics of Bauxite in Bolaven Plateau, Laos. Development Orientation of Building Materials, 9(3): 24–27 (in Chinese with English Abstract)Google Scholar
  28. Ling, K. Y., Zhu, X. Q., Wang, Z. G., et al., 2013. Discussion of the Prospecting and Searching Strategy of Laterite Bauxite in Southern China. Light Metals, 43(4): 7–12 (in Chinese with English Abstract)Google Scholar
  29. Liu, F. R., Tian, Z. Y., Li, D. K., 2009. Analysis and Prospecting of the Residual Bauxite Ore Deposits of the Laterite Weathering Crust in the South of Laos. China Non-Metallic Mining Industry Herald, 73(1): 49–52 (in Chinese with English Abstract)Google Scholar
  30. Liu, W. L., Wang, G. W., Chen, Y. Q., et al., 2011. The Structural Information and Alteration Information Extraction and Metallogenic Prognosis in Laos Area. Procedia Environmental Sciences, 10: 386–391.  https://doi.org/10.1016/j.proenv.2011.09.063 Google Scholar
  31. Luo, Z. C., Liu, Z. L., Li, J. P., et al., 2011. Geological Characteristics and Genesis of Bauxite Deposit in Pakxong Country, Champasak Province, Laos. Mineral Exploration, 2(3): 254–310 (in Chinese with English Abstract)Google Scholar
  32. Liu, Y., Cheng, Q. M., Xia, Q. L., et al., 2014. Mineral Potential Mapping for Tungsten Polymetallic Deposits in the Nanling Metallogenic Belt, South China. Journal of Earth Science, 25(4): 689–700.  https://doi.org/10.1007/s12583-014-0466-y Google Scholar
  33. MacLean, W. H., Bonavia, F. F., Sanna, G., 1997. Argillite Debris Converted to Bauxite during Karst Weathering: Evidence from Immobile Element Geochemistry at the Olmedo Deposit, Sardinia. Mineralium Deposita, 32(6): 607–616.  https://doi.org/10.1007/s001260050126 Google Scholar
  34. MacMillan, R. A., Moon, D. E., Coupé, R. A., 2007. Automated Predictive Ecological Mapping in a Forest Region of B. C., Canada, 2001–2005. Geoderma, 140(4): 353–373  https://doi.org/10.1016/j.geoderma.2007.04.027 Google Scholar
  35. Maung, K. N., Yoshida, T., Liu, G., et al., 2017. Assessment of Secondary Aluminum Reserves of Nations. Resources, Conservation and Recycling, 126: 34–41.  https://doi.org/10.1016/j.resconrec.2017.06.016 Google Scholar
  36. Maycock, L. D., Stone, C., 1994. Guide Book for Fieldtrip. Laos Hunt Oil Company, VientianeGoogle Scholar
  37. McFarlane, M. J., 1991. Some Sedimentary Aspects of Lateritic Weathering Profile Development in the Major Bioclimatic Zones of Tropical Africa. Journal of African Earth Sciences (and the Middle East), 12(1/2): 267–282.  https://doi.org/10.1016/0899-5362(91)90076-b Google Scholar
  38. Metcalfe, I., 2002. Permian Tectonic Framework and Paleogeography of SE Asia. Journal of Asian Earth Sciences, 20(6): 551–566.  https://doi.org/10.1016/s1367-9120(02)00022-6 Google Scholar
  39. Nykänen, V., Ojala, V. J., 2007. Spatial Analysis Techniques as Successful Mineral-Potential Mapping Tools for Orogenic Gold Deposits in the Northern Fennoscandian Shield, Finland. Natural Resources Research, 16(2): 85–92.  https://doi.org/10.1007/s11053-007-9046-5 Google Scholar
  40. Pour, A. B., Hashim, M., Hong, J. K., et al., 2017. Lithological and Alteration Mineral Mapping in Poorly Exposed Lithologies Using Landsat-8 and ASTER Satellite Data: North-Eastern Graham Land, Antarctic Peninsula. Ore Geology Reviews, in Press.  https://doi.org/10.1016/j.oregeorev.2017.07.018 Google Scholar
  41. Price, G. D., Valdes, P. J., Sellwood, B. W., 1997. Prediction of Modern Bauxite Occurrence: Implications for Climate Reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 131(1/2): 1–13.  https://doi.org/10.1016/s0031-0182(96)00145-9 Google Scholar
  42. Schirrmeister, L., Störr, M., 1994. The Weathering of Basaltic Rocks in- Burundi and Vietnam. Catena, 21(2/3): 243–256.  https://doi.org/10.1016/0341-8162(94)90015-9 Google Scholar
  43. Schwarz, T., 1997. Lateritic Bauxite in Central Germany and Implications for Miocene Palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 129(1/2): 37–50.  https://doi.org/10.1016/s0031-0182(96)00065-x Google Scholar
  44. Tan, L. G., 1999. A Summary of the Formation and Distribution Law of Gibbsite-Type Bauxite Deposit at Home and Abroad. Journal of Wanxi University, 15(2): 43–46 (in Chinese with English Abstract)Google Scholar
  45. Tré, G. D., Dujmović, J., Weghe, N. V. D., 2010. Supporting Spatial Decision Making by Means of Suitability Maps. Uncertainty Approaches for Spatial Data Modeling and Processing. Springer, Berlin. 9–27Google Scholar
  46. Wang, Y. F., Zhang, J. Q., Tong, S. Q., et al., 2017. Monitoring the Trends of Aeolian Desertified Lands Based on Time-Series Remote Sensing Data in the Horqin Sandy Land, China. Catena, 157: 286–298.  https://doi.org/10.1016/j.catena.2017.05.030 Google Scholar
  47. Wang, Z. Y., Zuo, R. G., Zhang, Z. J., 2015. Spatial Analysis of Fe Deposits in Fujian Province, China: Implications for Mineral Exploration. Journal of Earth Science, 26(6): 813–820.  https://doi.org/10.1007/s12583-015-0597-9 Google Scholar
  48. Xinh, L. T., Que, T., Hung, T. K., 1990. Bauxite Deposit. In: Xinh, L. T., Tri, T. V., Dzung, D. H., et al., eds., Geology and Mineral Resources of Vietnam, 1 128±143. Mineral Development Co., HanoiGoogle Scholar
  49. Xue, J., Gao, G. M., Cheng, G., 2009. Geological Characteristics and Metallogenic Regularity of Lateritic Bauxite in Bolaven Plateau, Laos. Contribution to Geology and Mineral Resource Research, 24(4): 297–302 (in Chinese with English Abstract)Google Scholar
  50. Yang, S. F., Fang, W. X., Hu, R. Z., et al., 2005. Microelement Geochemical Characteristics of the Weathered Crust of the Bolaven Plateau Basalt Laterite in Southern Laos. Mineral Resources and Geology, 19(6): 723–727 (in Chinese with English Abstract)Google Scholar
  51. Yang, Z. Y., 1990. World Bauxite Reserves and Distribution. World Nonferrous Metals, 8: 7–11 (in Chinese with English Abstract)Google Scholar
  52. Yousefi, M., Carranza, E. J. M., 2016. Data-Driven Index Overlay and Boolean Logic Mineral Prospectivity Modeling in Greenfields Exploration. Natural Resources Research, 25(1): 3–18.  https://doi.org/10.1007/s11053-014-9261-9 Google Scholar
  53. Yousefi, M., Carranza, E. J. M., 2017. Union Score and Fuzzy Logic Mineral Prospectivity Mapping Using Discretized and Continuous Spatial Evidence Values. Journal of African Earth Sciences, 128: 47–60.  https://doi.org/10.1016/j.jafrearsci.2016.04.019 Google Scholar
  54. Zaidi, F. K., Nazzal, Y., Ahmed, I., et al., 2015. Identification of Potential Artificial Groundwater Recharge Zones in Northwestern Saudi Arabia Using GIS and Boolean Logic. Journal of African Earth Sciences, 111: 156–169.  https://doi.org/10.1016/j.jafrearsci.2015.07.008 Google Scholar
  55. Zaw, K., Meffre, S., Lai, C. K., et al., 2014. Tectonics and Metallogeny of Mainland Southeast Asia-A Review and Contribution. Gondwana Research, 26(1): 5–30.  https://doi.org/10.1016/j.gr.2013.10.010 Google Scholar
  56. Zhang, S. H., Xiao, K. Y., Zhu, Y. S., et al., 2017. A Prediction Model for Important Mineral Resources in China. Ore Geology Reviews, 91: 1094–1101.  https://doi.org/10.1016/j.oregeorev.2017.09.010 Google Scholar
  57. Zhang, X. F., Liao, C. H., Li, J., et al., 2013. Fractional Vegetation Cover Estimation in Arid and Semi-Arid Environments Using HJ-1 Satellite Hyperspectral Data. International Journal of Applied Earth Observation and Geoinformation, 21: 506–512.  https://doi.org/10.1016/j.jag.2012.07.003 Google Scholar
  58. Zhang, Z. J., 2014. Factors Controlling Mineralization in the Carboniferous Bauxite Ore-Forming System in Western Henan. Mineral Resources and Geology, 4: 473–478 (in Chinese with English Abstract)Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chengdu CenterChina Geological SurveyChengduChina
  2. 2.Key Laboratory of Geoscience Spatial Information Technology, Ministry of Land and ResourcesChengdu University of TechnologyChengduChina

Personalised recommendations