Advertisement

SIMS U-Pb Zircon Geochronological and Carbon Isotope Chemostratigraphic Constraints on the Ediacaran-Cambrian Boundary Succession in the Three Gorges Area, South China

  • Taiyu Huang
  • Daizhao ChenEmail author
  • Yi Ding
  • Xiqiang Zhou
  • Gongjing Zhang
Article
  • 22 Downloads

Abstract

The Ediacaran-Cambrian succession in South China records dramatic biological, oceanic and geochemical changes, but it is not well constrained geochronologically. This study reports a new SIMS U-Pb date of 543.4±3.5 Ma (MSWD=1.2) from a tuffaceous layer in the Zhoujiaao Section, and carbonate C-O isotopes in both Zhoujiaao and Sixi sections, Three Gorges area. This tuffaceous layer is present in the upper Dengying Formation (i.e., the Baimatuo Member) which is characterized by a stable δ13Ccarb plateau and the beginning of a negative δ13Ccarb shift near its upper boundary. In accordance with the existing biostratigraphic and chemostratigraphic data, this new date corroborates that the upper boundary of the Dengying Formation in South China is approximately equivalent to the Ediacaran-Cambrian boundary (ca. 541 Ma). This age also provides the minimum age of the last appearance of the Shibantan biota in the Three Gorges area, indicating that the terminal Ediacaran index fossils (e.g., Cloudina, Sinotubulites) are not reliable stratigraphic markers for further subdivision of the uppermost Ediacaran.

Key words

U-Pb dating carbon isotope chemostratigraphy Dengying Formation Ediacaran-Cambrian boundary Three Gorges area Shibantan biota geochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank Guoqiang Tang, Xin Liao and Liyu Zhang for their guide in SIMS U-Pb geochronological analysis, and Linlin Cui for help in carbon isotope analysis. This work is funded by the National Natural Science Foundation of China (Nos. 41472089, 91755210). The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1233-x.

Supplementary material

12583_2019_1233_MOESM1_ESM.xlsx (24 kb)
Supplementary material, approximately 23.9 KB.

References Cited

  1. Amthor, J. E., Grotzinger, J. P., Schröder, S., et al., 2003. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian Boundary in Oman. Geology, 31(5): 431.  https://doi.org/10.1130/0091-7613(2003)031<0431:eocana>2.0.co;2 CrossRefGoogle Scholar
  2. Bowring, S. A., Grotzinger, J. P., Condon, D. J., et al., 2007. Geochronologic Constraints on the Chronostratigraphic Framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. American Journal of Science, 307(10): 1097–1145.  https://doi.org/10.2475/10.2007.01 CrossRefGoogle Scholar
  3. Cai, Y. P., Hua, H., Schiffbauer, J. D., et al., 2014. Tube Growth Patterns and Microbial Mat-Related Lifestyles in the Ediacaran Fossil Cloudina, Gaojiashan Lagerstätte, South China. Gondwana Research, 25(3): 1008–1018.  https://doi.org/10.1016/j.gr.2012.12.027 CrossRefGoogle Scholar
  4. Cai, Y. P., Xiao, S. H., Hua, H., et al., 2015. New Material of the Biomineralizing Tubular Fossil Sinotubulites from the Late Ediacaran Dengying Formation, South China. Precambrian Research, 261: 12–24.  https://doi.org/10.1016/j.precamres.2015.02.002 CrossRefGoogle Scholar
  5. Cai, Y. P., Xiao, S. H., Li, G. X., et al., 2019. Diverse Biomineralizing Animals in the Terminal Ediacaran Period Herald the Cambrian Explosion. Geology, 47(4): 380–384.  https://doi.org/10.1130/g45949.1 CrossRefGoogle Scholar
  6. Charvet, J., 2013. The Neoproterozoic-Early Paleozoic Tectonic Evolution of the South China Block: An Overview. Journal of Asian Earth Sciences, 74: 198–209.  https://doi.org/10.1016/j.jseaes.2013.02.015 CrossRefGoogle Scholar
  7. Chen, D. Z., Wang, J. G., Qing, H. R., et al., 2009. Hydrothermal Venting Activities in the Early Cambrian, South China: Petrological, Geochronological and Stable Isotopic Constraints. Chemical Geology, 258(3/4): 168–181.  https://doi.org/10.1016/j.chemgeo.2008.10.016 CrossRefGoogle Scholar
  8. Chen, D. Z., Zhou, X. Q., Fu, Y., et al., 2015. New U-Pb Zircon Ages of the Ediacaran-Cambrian Boundary Strata in South China. Terra Nova, 27(1): 62–68.  https://doi.org/10.1111/ter.12134 CrossRefGoogle Scholar
  9. Chen, Z., Zhou, C. M., Meyer, M., et al., 2013. Reply to Comment on “Trace Fossil Evidence for Ediacaran Bilaterian Animals with Complex Behaviors” [Precambrian Res. 224 (2013) 690–701]. Precambrian Research, 231: 386–387.  https://doi.org/10.1016/j.precamres.2013.04.002 CrossRefGoogle Scholar
  10. Chen, Z., Zhou, C. M., Xiao, S. H., et al., 2014. New Ediacara Fossils Preserved in Marine Limestone and their Ecological Implications. Scientific Reports, 4(1): 4180–4190.  https://doi.org/10.1038/srep04180 CrossRefGoogle Scholar
  11. Compston, W., Zhang, Z., Cooper, J. A., et al., 2008. Further SHRIMP Geochronology on the Early Cambrian of South China. American Journal of Science, 308(4): 399–420.  https://doi.org/10.2475/04.2008.01 CrossRefGoogle Scholar
  12. Condon, D., 2005. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 308(5718): 95–98.  https://doi.org/10.1126/science.1107765 CrossRefGoogle Scholar
  13. Cui, L. L., Wang, X., 2014. Determination of Carbon and Oxygen Isotopes of Geological Samples with a Complicated Matrix: Comparison of Different Analytical Methods. Anal Methods, 6(22): 9173–9178.  https://doi.org/10.1039/c4ay01717j CrossRefGoogle Scholar
  14. Ding, L. F., Li, Y., Chen, H. X., 1992a. Discovery of Micrhystridium Regulare from Sinian-Cambrian Boundary Strata in Yichang, Hubei, and Its Stratigraphic Significance. Acta Micropalaeontologica Sinica, 9(3): 303–309 (in Chinese with English Abstract)Google Scholar
  15. Ding, L. F., Zhang, L. Y., Li, Y., et al., 1992b. The Study of the Late Sinian-Early Cambrian Biotas from the Northern Margin of the Yangtze Platform. Scientific and Technical Documents Publishing House, Beijing (in Chinese)Google Scholar
  16. Ding, Q. X., Xing, Y. S., Wang, Z. Q., et al., 1993. Tubular and Trace Fossils from the Sinian Dengying Dormation in the Miaohe-Liantuo Area, Hubei Province. Geological Review, 39(1): 118–125 (in Chinese with English Abstract)Google Scholar
  17. Ding, Y., Chen, D. Z., Zhou, X. Q., et al., 2018. Paired δ13Ccarb13Corg Evolution of the Dengying Formation from Northeastern Guizhou and Implications for Stratigraphic Correlation and the Late Ediacaran Carbon Cycle. Journal of Earth Science.  https://doi.org/10.1007/s12583-018-0886-1 Google Scholar
  18. Duda, J. P., Blumenberg, M., Thiel, V., et al., 2014. Geobiology of a Palaeoecosystem with Ediacara-Type Fossils: The Shibantan Member (Dengying Formation, South China). Precambrian Research, 255: 48–62.  https://doi.org/10.1016/j.precamres.2014.09.012 CrossRefGoogle Scholar
  19. Duda, J. P., Zhu, M. Y., Reitner, J., 2016. Depositional Dynamics of a Bituminous Carbonate Facies in a Tectonically Induced Intra-Platform Basin: The Shibantan Member (Dengying Formation, Ediacaran Period). Carbonates and Evaporites, 31(1): 87–99.  https://doi.org/10.1007/s13146-015-0243-8 CrossRefGoogle Scholar
  20. Goldberg, T., Strauss, H., Guo, Q. J., et al., 2007. Reconstructing Marine Redox Conditions for the Early Cambrian Yangtze Platform: Evidence from Biogenic Sulphur and Organic Carbon Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 175–193.  https://doi.org/10.1016/j.palaeo.2007.03.015 CrossRefGoogle Scholar
  21. Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., et al., 1995. Biostratigraphic and Geochronologic Constraints on Early Animal Evolution. Science, 270(5236): 598–604.  https://doi.org/10.1126/science.270.5236.598 CrossRefGoogle Scholar
  22. Guo, J. F., Li, Y., Li, G. X., 2014. Small Shelly Fossils from the Early Cambrian Yanjiahe Formation, Yichang, Hubei, China. Gondwana Research, 25(3): 999–1007.  https://doi.org/10.1016/j.gr.2013.03.007 CrossRefGoogle Scholar
  23. Hua, H., Chen, Z., Yuan, X. L., 2007. The Advent of Mineralized Skeletons in Neoproterozoic Metazoa-New Fossil Evidence from the Gaojiashan Fauna. Geological Journal, 42(3/4): 263–279.  https://doi.org/10.1002/gj.1077 Google Scholar
  24. Hua, H., Chen, Z., Yuan, X. L., et al., 2005. Skeletogenesis and Asexual Reproduction in the Earliest Biomineralizing Animal Cloudina. Geology, 33(4): 277.  https://doi.org/10.1130/g21198.1 CrossRefGoogle Scholar
  25. Ishikawa, T., Ueno, Y., Komiya, T., et al., 2008. Carbon Isotope Chemostratigraphy of a Precambrian/Cambrian Boundary Section in the Three Gorge Area, South China: Prominent Global-Scale Isotope Excursions just before the Cambrian Explosion. Gondwana Research, 14(1–2): 193–208.  https://doi.org/10.1016/j.gr.2007.10.008 CrossRefGoogle Scholar
  26. Ishikawa, T., Ueno, Y., Shu, D. G., et al., 2013. Irreversible Change of the Oceanic Carbon Cycle in the Earliest Cambrian: High-Resolution Organic and Inorganic Carbon Chemostratigraphy in the Three Gorges Area, South China. Precambrian Research, 225: 190–208.  https://doi.org/10.1016/j.precamres.2011.10.004 CrossRefGoogle Scholar
  27. Jenkins, R. J. F., Cooper, J. A., Compston, W., 2002. Age and Biostratigraphy of Early Cambrian Tuffs from SE Australia and Southern China. Journal of the Geological Society, 159(6): 645–658.  https://doi.org/10.1144/0016-764901-127 CrossRefGoogle Scholar
  28. Jiang, G. Q., Kaufman, A. J., Christie-Blick, N., et al., 2007. Carbon Isotope Variability across the Ediacaran Yangtze Platform in South China: Implications for a Large Surface-to-Deep Ocean δ13C Gradient. Earth and Planetary Science Letters, 261(1/2): 303–320.  https://doi.org/10.1016/j.epsl.2007.07.009 CrossRefGoogle Scholar
  29. Jiang, G. Q., Shi, X. Y., Zhang, S. H., et al., 2011. Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in South China. Gondwana Research, 19(4): 831–849.  https://doi.org/10.1016/j.gr.2011.01.006 CrossRefGoogle Scholar
  30. Jiang, G. Q., Wang, X. Q., Shi, X. Y., et al., 2012. The Origin of Decoupled Carbonate and Organic Carbon Isotope Signatures in the Early Cambrian (ca. 542–20 Ma) Yangtze Platform. Earth and Planetary Science Letters, 317-318: 96–110.  https://doi.org/10.1016/j.epsl.2011.11.018 CrossRefGoogle Scholar
  31. Kaufman, A., Knoll, A., 1995. Neoproterozoic Variations in the C-Isotopic Composition of Seawater: Stratigraphic and Biogeochemical Implications. Precambrian Research, 73(1/2/3/4): 27–49.  https://doi.org/10.1016/0301-9268(94)00070-8 CrossRefGoogle Scholar
  32. Lan, Z. W., Li, X. H., Chu, X. L., et al., 2017. SIMS U-Pb Zircon Ages and Ni-Mo-PGE Geochemistry of the Lower Cambrian Niutitang Formation in South China: Constraints on Ni-Mo-PGE Mineralization and Stratigraphic Correlations. Journal of Asian Earth Sciences, 137: 141–162.  https://doi.org/10.1016/j.jseaes.2016.12.046 CrossRefGoogle Scholar
  33. Li, C., Hardisty, D. S., Luo, G., et al., 2017. Uncovering the Spatial Heterogeneity of Ediacaran Carbon Cycling. Geobiology, 15(2): 211–224.  https://doi.org/10.1111/gbi.12222 CrossRefGoogle Scholar
  34. Li, D., Ling, H. F., Jiang, S. Y., et al., 2009. New Carbon Isotope Stratigraphy of the Ediacaran-Cambrian Boundary Interval from SW China: Implications for Global Correlation. Geological Magazine, 146(4): 465–484.  https://doi.org/10.1017/s0016756809006268 CrossRefGoogle Scholar
  35. Li, D., Ling, H. F., Shields-Zhou, G. A., et al., 2013. Carbon and Strontium Isotope Evolution of Seawater across the Ediacaran-Cambrian Transition: Evidence from the Xiaotan Section, NE Yunnan, South China. Precambrian Research, 225: 128–147.  https://doi.org/10.1016/j.precamres.2012.01.002 CrossRefGoogle Scholar
  36. Li, X. H., Tang, G. Q., Gong, B., et al., 2013. Qinghu Zircon: A Working Reference for Microbeam Analysis of U-Pb Age and Hf and O Isotopes. Chinese Science Bulletin, 58(36): 4647–4654.  https://doi.org/10.1007/s11434-013-5932-x CrossRefGoogle Scholar
  37. Linnemann, U., Ovtcharova, M., Schaltegger, U., et al., 2019. New High-Resolution Age Data from the Ediacaran-Cambrian Boundary Indicate Rapid, Ecologically Driven Onset of the Cambrian Explosion. Terra Nova, 31(1): 49–58.  https://doi.org/10.1111/ter.12368 CrossRefGoogle Scholar
  38. Liu, S. G., Sun, W., Luo, Z. L., et al., 2013. Xingkai Taphrogenesis and Petroleum Exploration from Upper Sinian to Cambrian Strata in Sichuan Basin. Journal of Chengdu University of Technology, 40(5): 511–520 (in Chinese with English Abstract)Google Scholar
  39. Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth’s Early Ocean and Atmosphere. Nature, 506(7488): 307–315.  https://doi.org/10.1038/nature13068 CrossRefGoogle Scholar
  40. Maloof, A. C., Porter, S. M., Moore, J. L., et al., 2010. The Earliest Cambrian Record of Animals and Ocean Geochemical Change. Geological Society of America Bulletin, 122(11/12): 1731–1774.  https://doi.org/10.1130/b30346.1 CrossRefGoogle Scholar
  41. Marshall, C. R., 2006. Explaining the Cambrian “Explosion” of Animals. Annual Review of Earth and Planetary Sciences, 34(1): 355–384.  https://doi.org/10.1146/annurev.earth.33.031504.103001 CrossRefGoogle Scholar
  42. Meyer, M., Xiao, S. H., Gill, B. C., et al., 2014. Interactions between Ediacaran Animals and Microbial Mats: Insights from Lamonte Trevallis, a New Trace Fossil from the Dengying Formation of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 396: 62–74.  https://doi.org/10.1016/j.palaeo.2013.12.026 CrossRefGoogle Scholar
  43. Narbonne, G. M., 2005. The Ediacara Biota: Neoproterozoic Origin of Animals and Their Ecosystems. Annual Review of Earth and Planetary Sciences, 33(1): 421–442.  https://doi.org/10.1146/annurev.earth.33.092203.122519 CrossRefGoogle Scholar
  44. Okada, Y., Sawaki, Y., Komiya, T., et al., 2014. New Chronological Constraints for Cryogenian to Cambrian Rocks in the Three Gorges, Weng’an and Chengjiang areas, South China. Gondwana Research, 25(3): 1027–1044.  https://doi.org/10.1016/j.gr.2013.05.001 CrossRefGoogle Scholar
  45. Shen, B., Xiao, S. H., Zhou, C. M., et al., 2009. Yangtziramulus Zhangi New Genus and Species, a Carbonate-Hosted Macrofossil from the Ediacaran Dengying Formation in the Yangtze Gorges Area, South China. Journal of Paleontology, 83(4): 575–587.  https://doi.org/10.1666/08-042r1.1 CrossRefGoogle Scholar
  46. Sláma, J., Košler, J., Condon, D., et al., 2008. Ple.ovice Zircon.A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1–2): 1–35.  https://doi.org/10.1016/j.chemgeo.2007.11.005 CrossRefGoogle Scholar
  47. Steiner, M., Li, G. X., Qian, Y., et al., 2007. Neoproterozoic to Early Cambrian Small Shelly Fossil Assemblages and a Revised Biostratigraphic Correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1–2): 67–99.  https://doi.org/10.1016/j.palaeo.2007.03.046 CrossRefGoogle Scholar
  48. Sun, W. G., 1986. Late Precambrian Pennatulids (Sea Pens) from the Eastern Yangtze Gorge, China: Paracharnia gen. nov. Precambrian Research, 31(4): 361–375.  https://doi.org/10.1016/0301-9268(86)90040-9 CrossRefGoogle Scholar
  49. Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-Up. Precambrian Research, 122(1/2/3/4): 141–158.  https://doi.org/10.1016/s0301-9268(02)00209- CrossRefGoogle Scholar
  50. Wang, D., Ling, H. F., Li, D., et al., 2012. Carbon Isotope Stratigraphy of Yanjiahe Formation across the Ediacaran.Cambrian Boundary in the Three Gorges Area. Journal of Stratigraphy, 26(6): 715–720 (in Chinese with English Abstract)Google Scholar
  51. Wang, J. G., Chen, D. Z., Wang, D., et al., 2012a. Petrology and Geochemistry of Chert on the Marginal Zone of Yangtze Platform, Western Hunan, South China, during the Ediacaran-Cambrian Transition. Sedimentology, 59(3): 809–829.  https://doi.org/10.1111/j.1365-3091.2011.01280.x CrossRefGoogle Scholar
  52. Wang, J. G., Chen, D. Z., Yan, D. T., et al., 2012b. Evolution from an Anoxic to Oxic Deep Ocean during the Ediacaran.Cambrian Transition and Implications for Bioradiation. Chemical Geology, 306–307: 129–138.  https://doi.org/10.1016/j.chemgeo.2012.03.005 CrossRefGoogle Scholar
  53. Wang, X. Q., Shi, X. Y., Jiang, G. Q., et al., 2012. New U-Pb Age from the Basal Niutitang Formation in South China: Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran.Cambrian Transition. Journal of Asian Earth Sciences, 48: 1–8.  https://doi.org/10.1016/j.jse-aes.2011.12.023 CrossRefGoogle Scholar
  54. Wang, X. Q., Shi, X. Y., Jiang, G. Q., et al., 2014. Organic Carbon Isotope Gradient and Ocean Stratification across the Late Ediacaran-Early Cambrian Yangtze Platform. Science China Earth Sciences, 57(5): 919–929.  https://doi.org/10.1007/s11430-013-4732-0 CrossRefGoogle Scholar
  55. Weber, B., Steiner, M., Zhu, M. Y., 2007. Precambrian.Cambrian Trace Fossils from the Yangtze Platform (South China) and the Early Evolution of Bilaterian Lifestyles. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 328.349.  https://doi.org/10.1016/j.palaeo.2007.03.021 Google Scholar
  56. Wiedenbeck, M., Alle, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and Ree Analyses. Geostandards and Geoanalytical Research, 19(1): 1–23.  https://doi.org/10.1111/j.1751-908x.1995.tb00147.x CrossRefGoogle Scholar
  57. Xiao, S. H., Laflamme, M., 2009. On the Eve of Animal Radiation: Phylogeny, Ecology and Evolution of the Ediacara Biota. Trends in Ecology & Evolution, 24(1): 31–40.  https://doi.org/10.1016/j.tree.2008.07.015 CrossRefGoogle Scholar
  58. Xiao, S. H., Narbonne, G. M., Zhou, C. M., et al., 2016. Towards an Ediacaran Time Scale: Problems, Protocols, and Prospects. Episodes, 39(4): 540.  https://doi.org/10.18814/epiiugs/2016/v39i4/103886 CrossRefGoogle Scholar
  59. Xiao, S. H., Shen, B., Zhou, C. M., et al., 2005. A Uniquely Preserved Ediacaran Fossil with Direct Evidence for a Quilted Bodyplan. Proceedings of the National Academy of Sciences, 102(29): 10227–10232.  https://doi.org/10.1073/pnas.0502176102 CrossRefGoogle Scholar
  60. Yang, B., Steiner, M., Zhu, M. Y., et al., 2016. Transitional Ediacaran.Cambrian Small Skeletal Fossil Assemblages from South China and Kazakhstan: Implications for Chronostratigraphy and Metazoan Evolution. Precambrian Research, 285: 202–215.  https://doi.org/10.1016/j.precamres.2016.09.016 CrossRefGoogle Scholar
  61. Yang, C., Li, X. H., Zhu, M. Y., et al., 2017. SIMS U-Pb Zircon Geochronological Constraints on Upper Ediacaran Stratigraphic Correlations, South China. Geological Magazine, 154(6): 1202–1216.  https://doi.org/10.1017/s0016756816001102 CrossRefGoogle Scholar
  62. Yao, W. H., Li, Z. X., Li, W. X., et al., 2015. Detrital Provenance Evolution of the Ediacaran.Silurian Nanhua Foreland Basin, South China. Gondwana Research, 28(4): 1449–1465.  https://doi.org/10.1016/j.gr.2014.10.018 CrossRefGoogle Scholar
  63. Zhou, C. M., Xiao, S. H., 2007. Ediacaran Δ13C Chemostratigraphy of South China. Chemical Geology, 237(1/2): 89–108.  https://doi.org/10.1016/j.chemgeo.2006.06.021 CrossRefGoogle Scholar
  64. Zhou, C. M., Yuan, X. L., Xiao, S. H., et al., 2019. Ediacaran Integrative Stratigraphy and Timescale of China. Science China Earth Sciences, 62(1): 7–24.  https://doi.org/10.1007/s11430-017-9216-2 CrossRefGoogle Scholar
  65. Zhu, M., Zhuravlev, A. Y., Wood, R. A., et al., 2017. A Deep Root for the Cambrian Explosion: Implications of New Bio- And Chemostratigraphy from the Siberian Platform. Geology, 45(5): 459–462.  https://doi.org/10.1130/g38865.1 CrossRefGoogle Scholar
  66. Zhu, M. Y., 2010. The Origin and Cambrian Explosion of animals: Fossil Evidences from China. Acta Palaeontologica Sinica, 49(3): 269–287 (in Chinese with English Abstract)Google Scholar
  67. Zhu, M. Y., Babcock, L. E., Peng, S. C., 2006. Advances in Cambrian Stratigraphy and Paleontology: Integrating Correlation Techniques, Paleobiology, Taphonomy and Paleoenvironmental Reconstruction. Palaeoworld, 15(3/4): 217–222.  https://doi.org/10.1016/j.palwor.2006.10.016 CrossRefGoogle Scholar
  68. Zhu, M. Y., Lu, M., Zhang, J. M., et al., 2013. Carbon Isotope Chemostratigraphy and Sedimentary Facies Evolution of the Ediacaran Doushantuo Formation in Western Hubei, South China. Precambrian Research, 225: 7–28.  https://doi.org/10.1016/j.precamres.2011.07.019 CrossRefGoogle Scholar
  69. Zhu, M. Y., Yang, A. H., Yuan, J. L., et al., 2019. Cambrian Integrative Stratigraphy and Timescale of China. Science China Earth Sciences, 62(1): 25–60.  https://doi.org/10.1007/s11430-017-9291-0 CrossRefGoogle Scholar
  70. Zhu, M. Y., Zhang, J. M., Steiner, M., et al., 2003. Sinian-Cambrian Stratigraphic Framework for Shallow- to Deep-Water Environments of the Yangtze Platform: An Integrated Approach. Progress in Natural Science, 13(12): 951–960.  https://doi.org/10.1080/10020070312331344710 CrossRefGoogle Scholar
  71. Zhu, M. Y., Zhang, J. M., Yang, A. H., 2007. Integrated Ediacaran (Sinian) Chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 7–61.  https://doi.org/10.1016/j.palaeo.2007.03.025 CrossRefGoogle Scholar
  72. Zhu, R. X., Li, X. H., Hou, X. G., et al., 2009. SIMS U-Pb Zircon Age of a Tuff Layer in the Meishucun Section, Yunnan, Southwest China: Constraint on the Age of the Precambrian-Cambrian Boundary. Science in China Series D: Earth Sciences, 52(9): 1385.1392.  https://doi.org/10.1007/s11430-009-0152-6 Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Petroleum Resources Research, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Institution of Earth ScienceChinese Academy of SciencesBeijingChina
  4. 4.Post-Doctoral Research Station of Geological Resource and Geological EngineeringChengdu University of TechnologyChengduChina

Personalised recommendations