Advertisement

Journal of Earth Science

, Volume 30, Issue 3, pp 476–493 | Cite as

Origin of Chromitites in the Songshugou Peridotite Massif, Qinling Orogen (Central China): Mineralogical and Geochemical Evidence

  • Huichao Rui
  • Jiangang JiaoEmail author
  • Mingzhe Xia
  • Jingsui Yang
  • Zhaode Xia
Special Issue on Ophiolite, Orogenic Magmatism and Metamorphism Dedicated to IGCP 649: Diamonds and Recycled Mantle
  • 7 Downloads

Abstract

The Songshugou peridotite massif is located in the north of Shangdan suture zone, North Qinling orogenic belt of Central China. The massif is mainly composed of fine-grained mylonitic dunites, coarse-grained dunites, fine- and coarse-grained harzburgites, and minor clinopyroxenites. The coarsegrained dunites as well as parts of the harzburgites host small-scale chromitites. Chromite grains from various textural types of chromitites and dunites pervasively contain primary and secondary silicate inclusions. Primary inclusions are dominated by monophase olivine, with minor clinopyroxene and a few multiphase mineral assemblages consisting of olivine and clinopyroxene. Secondary inclusions, mainly Cr-chlorite and tremolite, show irregular crystal shapes. Besides, Cr2O3 contents (0.08 wt.%–0.71 wt.%) of primary olivine inclusions are remarkably higher than those of interstitial olivine (<0.1 wt.%). Chromites in the Songshugou peridotite massif are high-Cr type, with Cr# and Mg# values ranging of 67.5–87.6, and 23.4–41.2, respectively. The Cr-chlorite, formed by reactions between olivine and chromite in the presence of fluid under middle temperature, indicates the Songshugou peridotite massif has undergone alteration/metamorphism process during emplacement. Chromite grains are modified by these processes, resulting in the various degrees of enrichment of Fe2O3, Cr2O3, Zn, Co and Mn, depletion of MgO, Al2O3, Ga, Ti and Ni. Due to low silicate/chromite ratios in the massive ores, chromites from them are slightly influenced by alteration/metamorphism and thus preserve the pristine magmatic compositions. The parental magma calculated based on them has 11.17 wt.%–13.57 wt.% A12O3 and 0.15 wt.%–0.27 wt.% TiO2, which is similar to the parental melts of high-Cr chromitites from elsewhere and comparable with those of boninites. Combined with informations from previous studies, major and trace elements geochemistry of chromite, as well as the nature of the parental magma, it can be revealed that the Songshugou chromitities formed in a supra-subduction zone environment.

Keywords

peridotite chromitite chromite trace element parental magma Songshugou Qinling Orogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (No. 41672064) and the International Geoscience Programme “Diamonds and Recycled Mantle” (No. IGCP-649). The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1227-8.

References Cited

  1. Akbulut, M., González-Jiménez, J. M., Griffin, W. L., et al., 2016. Tracing Ancient Events in the Lithospheric Mantle: A Case Study from Ophiolitic Chromitites of SW Turkey. Journal of Asian Earth Sciences, 119: 1–19.  https://doi.org/10.1016/jjseaes.2016.01.008 Google Scholar
  2. Arai, S., Matsukage, K., 1998. Petrology of a Chromitite Micropod from Hess Deep, Equatorial Pacific: A Comparison between Abyssal and Alpine-Type Podiform Chromitites. Lithos, 43(1): 1–14.  https://doi.org/10.1016/s0024-4937(98)00003-6 Google Scholar
  3. Ballhaus, C., Wirth, R., Fonseca, R. O. C., et al., 2017. Ultra-High Pressure and Ultra-Reduced Minerals in Ophiolites may Form by Lightning Strikes. Geochemical Perspectives Letters, 5: 42–46.  https://doi.org/10.7185/geochemlet.1744 Google Scholar
  4. Barnes, S. J., 2000. Chromite in Komatiites, II. Modification during Green-schist to Mid-Amphibolite Facies Metamorphism. Journal of Petrology, 41(3): 387–409.  https://doi.org/10.1093/petrology/41.3.387 Google Scholar
  5. Barnes, S. J., Roeder, P. L., 2001. The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks. Journal of Petrology, 42(12): 2279–2302.  https://doi.org/10.1093/petrology/42.12.2279 Google Scholar
  6. Bonatti, E., Michael, P. J., 1989. Mantle Peridotites from Continental Rifts to Ocean Basins to Subduction Zones. Earth and Planetary Science Letters, 91(3/4): 297–311.  https://doi.org/10.1016/0012-821x(89)90005-8 Google Scholar
  7. Burkhard, D. J. M., 1993. Accessory Chromium Spinels: Their Coexistence and Alteration in Serpentinites. Geochimica et Cosmochimica Acta, 57(6): 1297–1306.  https://doi.org/10.1016/0016-7037(93)90066-6 Google Scholar
  8. Cao, Y., Song, S. G., Su, L., et al., 2016. Highly Refractory Peridotites in Songshugou, Qinling Orogen: Insights into Partial Melting and Melt/Fluid-Rock Reactions in Forearc Mantle. Lithos, (252/253): 234–254.  https://doi.org/10.1016/j.lithos.2016.03.002 Google Scholar
  9. Cao, Y., Jung, H., Song, S. G., 2017. Olivine Fabrics and Tectonic Evolution of Fore-Arc Mantles: A Natural Perspective from the Songshugou Dunite and Harzburgite in the Qinling Orogenic Belt, Central China. Geochemistry, Geophysics, Geosystems, 18(3): 907–934.  https://doi.org/10.1002/2016gc006614 Google Scholar
  10. Cathelineau, M., Nieva, D., 1985. A Chlorite Solid Solution Geothermometer. The Los Azufres (Mexico) Geothermal System. Contributions to Mineralogy and Petrology, 91(3): 235–244.  https://doi.org/10.1007/bf00413350 Google Scholar
  11. Cathelineau, M., 1988. Cation Site Occupancy in Chlorites and Illites as a Function of Temperature. Clay Minerals, 23(4): 471–485.  https://doi.org/10.1180/claymin.1988.023.4.13 Google Scholar
  12. Chen, D. L., Ren, Y. F., Gong, X. K., et al., 2015. Identification and Its Geological Significance of Eclogite in Songshugou, the North Qinling. Acta Petrologica Sinica, 31(7): 1841–1854 (in Chinese with English Abstract)Google Scholar
  13. Colas, V., González-Jiménez, J. M., Griffin, W. L., et al., 2014. Fingerprints of Metamorphism in Chromite: New Insights from Minor and Trace Elements. Chemical Geology, 389: 137–152.  https://doi.org/10.1016/j.chemgeo.2014.10.001 Google Scholar
  14. Dong, Y. P., Santosh, M., 2016. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1–40.  https://doi.org/10.1016/j.gr.2015.06.009 Google Scholar
  15. Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213–237.  https://doi.org/10.1016/j.jseaes.2011.03.002 Google Scholar
  16. Dong, Y. P., Zhou, M. F., Zhang, G. W., et al., 2008. The Grenvillian Songshugou Ophiolite in the Qinling Mountains, Central China: Implications for the Tectonic Evolution of the Qinling Orogenic Belt. Journal of Asian Earth Sciences, 32(5/6): 325–335.  https://doi.org/10.1016/j.jseaes.2007.11.010 Google Scholar
  17. Evans, B. W., Hattori, K., Baronnet, A., 2013. Serpentinite: What, Why, Where?. Elements, 9(2): 99–106.  https://doi.org/10.2113/gselements.9.2.99 Google Scholar
  18. Gervilla, F., Padrón-Navarta, J. A., Kerestedjian, T., et al., 2012. Formation of Ferrian Chromite in Podiform Chromitites from the Golyamo Kamenyane Serpentinite, Eastern Rhodopes, SE Bulgaria: A Two-Stage Process. Contributions to Mineralogy and Petrology, 164(4): 643–657.  https://doi.org/10.1007/s00410-012-0763-3 Google Scholar
  19. González-Jiménez, J. M., Locmelis, M., Belousova, E., et al., 2015. Genesis and Tectonic Implications of Podiform Chromitites in the Metamorphosed Ultramafic Massif of Dobromirtsi (Bulgaria). Gondwana Research, 27(2): 555–574.  https://doi.org/10.1016/j.gr.2013.09.020 Google Scholar
  20. González-Jiménez, J. M., Griffin, W. L., Proenza, J. A., et al., 2014. Chromitites in Ophiolites: How, Where, When, Why? Part II. The Crystallization of Chromitites. Lithos, 189: 140–158.  https://doi.org/10.1016/j.lithos.2013.09.008 Google Scholar
  21. González-Jiménez, J. M., Barra, F., Garrido, L. N. F., et al., 2016. A Secondary Precious and Base Metal Mineralization in Chromitites Linked to the Development of a Paleozoic Accretionary Complex in Central Chile. Ore Geology Reviews, 78: 14–40.  https://doi.org/10.1016/j.oregeorev.2016.02.017 Google Scholar
  22. González-Jiménez, J. M., Camprubi, A., Colás, V., et al., 2017. The Recycling of Chromitites in Ophiolites from Southwestern North America. Lithos, 294/295: 53–72.  https://doi.org/10.1016/j.lithos.2017.09.020 Google Scholar
  23. Graham, I. T., Franklin, B. J., Marshall, B., 1996. Chemistry and Mineralogy of Podiform Chromitite Deposits, Southern NSW, Australia: A Guide to Their Origin and Evolution. Mineralogy and Petrology, 57(3/4): 129–150.  https://doi.org/10.1007/bf01162355 Google Scholar
  24. Griffin, W. L., Afonso, J. C., Belousova, E. A., et al., 2016. Mantle Recycling: Transition Zone Metamorphism of Tibetan Ophiolitic Peridotites and Its Tectonic Implications. Journal of Petrology, 57(4): 655–684.  https://doi.org/10.1093/petrology/egw011 Google Scholar
  25. Guo, G. L., Yang, J. S., Liu, X. D., et al., 2015. Mid-Ocean Ridge (MOR) and Suprasubduction Zone (SSZ) Geological Events in the Yarlung Zangbo Suture Zone: Evidence from the Mineral Record of Mantle Peridotites. Journal of Asian Earth Sciences, 110: 33–54.  https://doi.org/10.1016/j.jseaes.2015.02.012 Google Scholar
  26. Hey, M. H., 1954. ANew Review of the Chlorites. Mineralogical Magazine and Journal of the Mineralogical Society, 30(224): 277–292.  https://doi.org/10.1180/minmag.1954.030.224.01 Google Scholar
  27. Irvine, T. N., 1967. Chromian Spinel as a Petrogenetic Indictor: Part 2. Petrologic Applications. Canadian Journal of Earth Sciences, 4(1): 71–103.  https://doi.org/10.1139/e67-004 Google Scholar
  28. Jollands, M. C., O’Neill, H. S. C., Van Orman, J., et al., 2018. Substitution and Diffusion of Cr2+ and Cr3+ in Synthetic Forsterite and Natural Olivine at 1 200–1 500 °C and 1 bar. Geochimica et Cosmochimica Acta, 220: 407–428.  https://doi.org/10.1016/j.gca.2017.09.030 Google Scholar
  29. Kamenetsky, V. S., Crawford, A. J., Meffre, S., 2001. Factors Controlling Chemistry of Magmatic Spinel: An Empirical Study of Associated Olivine, Cr-Spinel and Melt Inclusions from Primitive Rocks. Journal of Petrology, 42(4): 655–671.  https://doi.org/10.1093/petrology/42.4.655 Google Scholar
  30. Kelemen, P. B., Hirth, G., Shimizu, N., et al., 1997. A Review of Melt Migration Processes in the Adiabatically Upwelling Mantle beneath Oceanic Spreading Ridges. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 355(1723): 283–318.  https://doi.org/10.1098/rsta.1997.0010 Google Scholar
  31. Klein, E. L., Koppe, J. C., 2000. Chlorite Geothermometry and Physicochemical Conditions of Gold Mineralization in the Paleoproterozoic Caixas Deposit, São Luis Craton, Northern Brazil. Geochimica Brasiliensis, 14(2): 219–232.  https://doi.org/10.21715/gb.v14i2.177 Google Scholar
  32. Kranidiotis, P., MacLean, W. H., 1987. Systematics of Chlorite Alteration at the Phelps Dodge Massive Sulfide Deposit, Matagami, Quebec. Economic Geology, 82(7): 1898–1911.  https://doi.org/10.2113/gsecongeo.82.7.1898 Google Scholar
  33. Lee, B., Zhu, L. M., Gong, H. J., et al., 2010. Genetic Relationship between Peridotites and Chromite Deposit from Songshugou Area of North Qinling. Acta Petrologica Sinica, 26: 1487–1502 (in Chinese with English Abstract)Google Scholar
  34. Li, H. Y., Liu, J. F., Yang, L., 2009. Characteristics of Zircons from a Meta-morphic Contact Zone of the Songshugou Ultramafic Pluton in North Qinling and Their Geological Significance. Acta Petrologica Sinica, 28: 225–234 (in Chinese with English Abstract)Google Scholar
  35. Lian, D., Yang, J., Yildirim, D., et al., 2017. Deep Mantle Origin and Ultra-Reducing Conditions in Podiform Chromitite: Diamond, Moissanite, and other Unusual Minerals in Podiform Chromitites from the Pozanti-Karsanti Ophiolite, Southern Turkey. American Mineralogist, 102(5): 1101–1113.  https://doi.org/10.2138/am-2017-5850 Google Scholar
  36. Liang, F. H., Yang, J. S., Xu, Z. Q., et al., 2014. Chromium in the Olivine Lattice: Chromium-Rich Olivines and Their Implication of Deep Mantle Origin in the Luobusa Mantle Peridotite and Chromitite, Tibet. Acta Petrologica Sinica, 30(8): 2125–2136 (in Chinese with English Abstract)Google Scholar
  37. Liu, J. F., Li, C., Sun, Y., et al., 2014. Melt Percolation in the Songshugou Ultramafic Massif of the Qinling Orogenic Belt, Central China. International Geology Review, 57(9/10): 1326–1339.  https://doi.org/10.1080/00206814.2014.990525 Google Scholar
  38. Liu, J. F., Sun, Y., Tong, L. X., et al., 2009. Emplacement Age of the Songshugou Ultramafic Massif in the Qinling Orogenic Belt, and Geologic Implications. International Geology Review, 51(1): 58–76.  https://doi.org/10.1080/00206810802650576 Google Scholar
  39. Liu, J. G., Hattori, K., Wang, J., 2017. Mineral Inclusions in Chromite from the Chromite Deposit in the Kudi Ophiolite, Tibet, Proto-Tethys. Acta Geologica Sinica (English Edition), 91(2): 469–485.  https://doi.org/10.1111/1755-6724.13112 Google Scholar
  40. Liu, L., Zhou, D. W., Dong, Y. P., et al., 1995. High Pressure Metabasites and Their Retrograde Metamorphic P-T-t Path from Songshugou Area, Eastern Qinling Mountain. Acta Petrologica Sinica, 11: 127–136 (in Chinese with English Abstract)Google Scholar
  41. Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43.  https://doi.org/10.1016/jxhemgeo.2008.08.004 Google Scholar
  42. Luo, J., Wakabayashi, J., He, Z. L., et al., 2018. An Upper Crustal Ophiolite Remnant within the Feather River Ultramafic Belt, California: Tectonomagmatic Origins and Implications for Its Evolution. Journal of Earth Science, 13(5).  https://doi.org/10.1007/sl2583-017-0964-9
  43. Malpas, J., Robinson, P. T., Zhou, M. F., 1997. Chromitite and Ultramafic Rock Compositional Zoning through a Paleotransform Fault, Poum, New Caledonia: Discussion. Economic Geology, 92(4): 502–503.  https://doi.org/10.2113/gsecongeo.92.4.502 Google Scholar
  44. Maurel, C., Maurel, P., 1982. Etude Experimentale de la Distribution de l’Aluminium Entre Bain Silicate Basique et Spinelle Chromifere. Implications Petrogenetiques: Teneur en Chrome des Spinelles. Bulletin de Mineralogie, 105: 197–202Google Scholar
  45. McElduff, B., Stumpfl, E. F., 1991. The Chromite Deposits of the Troodos Complex, Cyprus-Evidence for the Role of a Fluid Phase Accompanying Chromite Formation. Mineralium Deposita, 26(4): 307–318.  https://doi.org/10.1007/bf00191079 Google Scholar
  46. Merlini, A., Grieco, G., Diella, V., 2009. Ferritchromite and Chromian-Chlorite Formation in Melange-Hosted Kalkan Chromitite (Southern Urals, Russia). American Mineralogist, 94(10): 1459–1467.  https://doi.org/10.2138/am.2009.3082 Google Scholar
  47. Merlini, A., Grieco, G., Ottolini, L., et al., 2011. Probe and SIMS Investigation of Clinopyroxene Inclusions in Chromites from the Troodos Chromitites (Cyprus): Implications for Dunite-Chromitite Genesis. Ore Geology Reviews, 41(1): 22–34.  https://doi.org/10.1016/j.oregeorev.2011.06.002 Google Scholar
  48. Mukherjee, R., Mondai, S. K., González-Jiménez, J. M., et al., 2015. Trace-Element Fingerprints of Chromite, Magnetite and Sulfides from the 3.1 Ga Uftramafic-mafic Rocks of the Nuggihalli Greenstone Belt, Western Dharwar Craton (India). Contributions to Mineralogy and Petrology, 169(6): 59.  https://doi.org/10.1007/s00410-015-1148-1 Google Scholar
  49. Nie, H., Yang, J. Z., Zhou, G. Y., et al., 2017. Geochemical and Re-Os Isotope Constraints on the Origin and Age of the Songshugou Peridotite Massif in the Qinling Orogen, Central China. Lithos, 292/293: 307–319.  https://doi.org/10.1016/j.lithos.2017.09.009 Google Scholar
  50. Ozawa, K., 1994. Melting and Melt Segregation in the Mantle Wedge above a Subduction Zone: Evidence from the Chromite-Bearing Peridotites of the Miyamori Ophiolite Complex, Northeastern Japan. Journal of Petrology, 35(3): 647–678.  https://doi.org/10.1093/petrology/353.647 Google Scholar
  51. Pagé, P., Barnes, S. J., 2009. Using Trace Elements in Chromites to Constrain the Origin of Podiform Chromitites in the Thetford Mines Ophiolite, Quebec, Canada. Economic Geology, 104(7): 997–1018.  https://doi.org/10.2113/econgeo.104.7.997 Google Scholar
  52. Pagé, P., Bédard, J. H., Schroetter, J. M., et al., 2008. Mantle Petrology and Mineralogy of the Thetford Mines Ophiolite Complex. Lithos, 100(1-4): 255–292.  https://doi.org/10.1016/j.lithos.2007.06.017 Google Scholar
  53. Ratschbacher, L., Hacker, B. R., Calvert, A., et al., 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, Geochronology, and Deformation History. Tectonophysics, 366(1/2): 1–53.  https://doi.org/10.1016/s0040-1951(03)00053-2 Google Scholar
  54. Ren, Y. F., Chen, F. Y., Yang, J. S., et al., 2008. Exsolutions of Diopside and Magnetite in Olivine from Mantle Dunite, Luobusa Ophiolite, Tibet, China. Acta Geologica Sinica (English Edition), 82(2): 377–384.  https://doi.org/10.1111/j.1755-6724.2008.tb00587.x Google Scholar
  55. Sack, R. O., Ghiorso, M. S., 1991. Chromian Spinels as Petrogenetic Indicators: Thermodynamics and Petrological Applications. American Mineralogist, 76: 827–847Google Scholar
  56. Satsukawa, T., Griffin, W. L., Piazolo, S., et al., 2015. Messengers from the Deep: Fossil Wadsleyite-Chromite Microstructures from the Mantle Transition Zone. Scientific Reports, 5(1): 1–8.  https://doi.org/10.1038/srepl6484 Google Scholar
  57. Shabani, T. A. A., 2009. Mineral Chemistry of Chlorite Replacing Biotite from Granitic Rocks of the Canadian Appalachians. Journal of Sciences, Islamic Republic of Iran, 20(3): 265–275Google Scholar
  58. Smith, S. E., Elthon, D., 1988. Mineral Compositions of Plutonic Rocks from the Lewis Hills Massif, Bay of Islands Ophiolite. Journal of Geophysical Research, 93(B4): 3450–3468.  https://doi.org/10.1029/jb093ib04p03450 Google Scholar
  59. Song, S. G., Su, L., Yang, H. Q., et al., 1998. Petrogenesis and Emplacement of the Songshugou Peridotite in Shangnan, Shaanxi. Acta Petrologica Sinica, 14: 212–221 (in Chinese with English Abstract)Google Scholar
  60. Su, L., Song, S. G., Song, B., et al., 2004. SHRIMP Zircon U-Pb Ages of garnet Pyroxenite and Fushui Gabbroic Complex in Songshugou Region and Constraints on Tectonic Evolution of Qinling Orogenic Belt. Chinese Science Bulletin, 49(12): 1146–1157 (in Chinese)Google Scholar
  61. Su, L., Song, S. G,, Zhou, D. W., 2005. Petrogenesis of Songshugou Dunite Body in the Qinling Orogenic Belt, Central China: Constraints from Geochemistry and Melt Inclusions. Science in China Series D: Earth Sciences, 48(8): 1146–1157 (in Chinese)Google Scholar
  62. Tang, L., Santosh, M., Dong, Y. P., et al., 2016. Early Paleozoic Tectonic Evolution of the North Qinling Orogenic Belt: Evidence from Geochemistry, Phase Equilibrium Modeling and Geochronology of Metamorphosed Mafic Rocks from the Songshugou Ophiolite. Gondwana Research, 30: 48–64.  https://doi.org/10.1016/j.gr.2014.10.006 Google Scholar
  63. Uysal, İ., Tarkian, M., Sadiklar, M. B., et al., 2009. Petrology of Al- and Cr-Rich Ophiolitic Chromitites from the Muğla, SW Turkey: Implications from Composition of Chromite, Solid Inclusions of Platinum-Group Mineral, Silicate, and Base-Metal Mineral, and Os-Isotope Geochemistry. Contributions to Mineralogy and Petrology, 158(5): 659–674.  https://doi.org/10.1007/s00410-009-0402-9 Google Scholar
  64. Varfalvy, V., Hébert, R., Bédard, J. H., 1996. Interactions between Melt and Upper-Mantle Peridotites in the Norm Arm Mountain Massif, Bay of Islands Ophiolite, Newfoundland, Canada: Implications for the Genesis of Boninitic and Related Magmas. Chemical Geology, 129(1/2): 71–90.  https://doi.org/10.1016/0009-2541(95)00140-9 Google Scholar
  65. Varfalvy, V., Hébert, R., Bédard, J. H., 1997. Interactions between Melt and Upper-Mantle Peridotites in the Norm Arm Mountain Massif, Bay of Islands Ophiolite, Newfoundland, Canada: Implications for the Genesis of Boninitic and Related Magmas. Chemical Geology, 129(1/2): 71–90.  https://doi.org/10.1016/0009-2541(95)00140-9 Google Scholar
  66. Wang, X. B., Yang, J. S., Shi, R. D., et al., 2005. The Songshugou Rock Body from Qinling—A Example of Ultramafic Cumulate Undergone Amphibole Facies Metamorphism. Acta Geologica Sinica, 79: 174–189 (in Chinese with English Abstract)Google Scholar
  67. Wu, W. W., Yang, J. S., Dilek, Y., et al., 2018. Multiple Episodes of Melting, Depletion, and Enrichment of the Tethyan Mantle: Petrogenesis of the Peridotites and Chromitites in the Jurassic Skenderbeu Massif, Mirdita Ophiolite, Albania. Lithosphere, 10(1): 54–78.  https://doi.org/10.1130/1606.1 Google Scholar
  68. Xiao, Y., Teng, F. Z., Su, B. X., et al., 2016. Iron and Magnesium Isotopic Constraints on the Origin of Chemical Heterogeneity in Podiform Chromitite from the Luobusa Ophiolite, Tibet. Geochemistry, Geophysics, Geosystems, 17(3): 940–953.  https://doi.org/10.1002/2015gc006223 Google Scholar
  69. Xiong, F. H., Yang, J. S., Robinson, P. T., et al., 2015. Origin of Podiform Chromitite, a New Model Based on the Luobusa Ophiolite, Tibet. Gondwana Research, 27(2): 525–542.  https://doi.org/10.1016/j.gr.2014.04.008 Google Scholar
  70. Xiong, F. H., Yang, J. S., Robinson, P. T., et al., 2017a. Petrology and Geochemistry of Peridotites and Podiform Chromitite in the Xigaze Ophiolite, Tibet: Implications for a Suprasubduction Zone Origin. Journal of Asian Earth Sciences, 146: 56–75  https://doi.org/10.1016/j.jseaes.2017.05.001 Google Scholar
  71. Xiong, F. H., Yang, J. S., Dilek, Y., et al., 2017b. Origin and Significance of Diamonds and other Exotic Minerals in the Dingqing Ophiolite Peridotites, Eastern Bangong-Nujiang Suture Zone, Tibet. Lithosphere.  https://doi.org/10.1130/1607.1 Google Scholar
  72. Xiong, Q., Griffin, W. L., Zheng, J. P., et al., 2016. Southward Trench Migration at ~130-120 Ma Caused Accretion of the Neo-Tethyan Forearc Lithosphere in Tibetan Ophiolites. Earth and Planetary Science Letters, 438: 57–65  https://doi.org/10.1016/j.epsl.2016.01.014 Google Scholar
  73. Xiong, Q., Henry, H., Griffin, W. L., et al., 2017. High- and Low-Cr Chromitite and Dunite in a Tibetan Ophiolite: Evolution from Mature Subduction System to Incipient Forearc in the Neo-Tethyan Ocean. Contributions to Mineralogy and Petrology, 172(6): 45.  https://doi.org/10.1007/s00410-017-1364-y Google Scholar
  74. Yang, J. S., Bai, W. J., Fang, Q. S., et al., 2007. Discovery of Diamond and an Unusual Mineral Group from the Podiform Chromite, Polar Ural. Geology in China, 34(5): 950–952 (in Chinese with English Abstract)Google Scholar
  75. Yang, J. S., Meng, F. C., Xu, X. Z., et al., 2015. Diamonds, Native Elements and Metal Alloys from Chromitites of the Ray-Iz Ophiolite of the Polar Urals. Gondwana Research, 27(2): 459–485.  https://doi.org/10.1016/j.gr.2014.07.004 Google Scholar
  76. Yang, J. S., Robinson, P. T., Dilek, Y., 2014. Diamonds in Ophiolites. Elements, 10(2): 127–130.  https://doi.org/10.2113/gselements.10.2.127 Google Scholar
  77. Yu, H., Zhang, H. F., Li, X. H., et al., 2016. Tectonic Evolution of the North Qinling Orogen from Subduction to Collision and Exhumation: Evidence from Zircons in Metamorphic Rocks of the Qinling Group. Gondwana Research, 30(1): 65–78.  https://doi.org/10.1016/j.gr.2015.07.003 Google Scholar
  78. Yu, H., Zhang, H. F., Santosh, M., 2017. Mylonitized Peridotites of Songshugou in the Qinling Orogen, Central China: A Fragment of Fossil Oceanic Lithosphere Mantle. Gondwana Research, 52: 1–17  https://doi.org/10.1016/j.gr.2017.08.007 Google Scholar
  79. Zaccarini, F., Garuti, G., Proenza, J. A., et al., 2011. Chromite and Platinum-Group-Elements Mineralization in the Santa Elena Ophiolitic Ultramafïc Nappe (Costa Rica): Geodynamic Implications. Geologica Acta, 9: 407–423Google Scholar
  80. Zanetti, A., Giovanardi, T., Langone, A., et al., 2016. Origin and Age of Zircon-Bearing Chromitite Layers from the Finero Phlogopite Peridotite (Ivrea-Verbano Zone, Western Alps) and Geodynamic Consequences. Lithos, 262: 58–74  https://doi.org/10.1016/j.lithos.2016.06.015 Google Scholar
  81. Zang, W., Fyfe, W. S., 1995. Chloritization of the Hydrothermally Altered Bedrock at the Igarapé Bahia Gold Deposit, Carajás, Brazil. Mineralium Deposita, 30(1): 30–38.  https://doi.org/10.1007/bf00208874 Google Scholar
  82. Zhang, G. W., Zhang, Z. Q., Dong, Y. P., 1995. Nature of the Main Tectono-Lithostratigraphic Units of the Qinling Orogen: Implications for the Tectonic Evolution. Acta Petrologica Sinica, 11: 101–114 (in Chinese with English Abstract)Google Scholar
  83. Zhang, Z. J., 1995. The Genesis of Dunites in the Songshugou Ultramafïc Rock Body, North Qinling. Acta Petrologica Sinica, 11: 178–189 (in Chinese with English Abstract)Google Scholar
  84. Zhou, M. F., Robinson, P. T., Malpas, J, et al, 1996. Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet): Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle. Journal of Petrology, 37(1): 3–21.  https://doi.org/10.1093/petrology/37.L3 Google Scholar
  85. Zhou, M. F., Robinson, P. T., Malpas, J., et al, 2005. REE and PGE Geochemical Constraints on the Formation of Dunites in the Luobusa Ophiolite, Southern Tibet. Journal of Petrology, 46(3): 615–639.  https://doi.org/10.1093/petrology/egh091 Google Scholar
  86. Zhou, M. F., Robinson, P. T., Su, B. X., et al, 2014. Compositions of Chromite, Associated Minerals, and Parental Magmas of Podiform Chromite Deposits: The Role of Slab Contamination of Asthenospheric Melts in Suprasubduction Zone Environments. Gondwana Research, 26(1): 262–283.  https://doi.org/10.1016/j.gr.2013.12.011 Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Earth SciencesChina University of GeosciencesWuhanChina
  2. 2.Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of GeologyChinese Academy of Geological SciencesBeijingChina
  3. 3.School of Earth Science and ResourcesChang’an UniversityXi’anChina

Personalised recommendations