Advertisement

Journal of Earth Science

, Volume 30, Issue 3, pp 563–570 | Cite as

Helium Isotopic Composition of the Songduo Eclogites in the Lhasa Terrane, Tibet: Information from the Deep Mantle

  • Zhaoli LiEmail author
  • Jingsui Yang
  • Tianfu Li
  • Songyong Chen
Special Issue on Ophiolite, Orogenic Magmatism and Metamorphism Dedicated to IGCP 649: Diamonds and Recycled Mantle

Abstract

Helium isotopic compositions are considered to be ideal tracers to identify whether mantle materials have been added to crustal rocks or fluids. In this paper, we present the helium isotopic compositions of the Songduo eclogites in the Lhasa terrane, Tibet. We found that garnet and omphacite in the eclogites have different helium retention characteristics. The 4He content of most omphacite grains are about 10–20 times of that of garnet, suggesting that omphacite has a higher ability to capture 4He than garnet. Similarly, there is about 10–20 times difference in 4He content between omphacite and garnet in the same eclogite samples. The 3He/4He ratios of garnet and omphacite in these rocks range from 0.27 to 0.60 Ra (relative to the modern air 3He/4He ratio, 1.4×10−6). These ratios are within the range of both mantle- and crust-derived helium, suggesting mixed sources. The Songduo eclogites have much higher 3He/4He ratios than those observed in the Dabie eclogites of eastern China. Such high ratios are typically thought to be associated with deep mantle sources. We cautiously conclude that deep mantle materials might have been involved during the formation of the Songduo eclogites.

Key Words

eclogite helium isotopic composition HP/UHP metamorphic belt Lhasa terrane Qinghai-Tibet Plateau 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We gratefully thank Prof. Paul Robinson for the valuable comments and suggestions. Discussions with Prof. Zeming Zhang improved the paper significantly. This research was supported jointly by the National Natural Science Foundation of China (Nos. 41373029, 41773029) and the China Geological Survey (Nos. DD20190060, 12120114061501). The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1226-9.

References Cited

  1. Basu, A. R., Poreda, R. J., Renne, P. R., et al., 1995. High-3He Plume Origin and Temporal-Spatial Evolution of the Siberian Flood Basalts. Science, 269(5225): 822–825.  https://doi.org/10.1126/science.269.5225.822 Google Scholar
  2. Bernard-Griffiths, J., Peucat, J. J., Cornichet, J., et al., 1985. U, Pb, Nd Isotope and REE Geochemistry in Eclogites from the Cabo Ortegal Complex, Galicia, Spain: An Example of REE Immobility Conserving MORB-Like Patterns during High-Grade Metamorphism. Chemical Geology 52(2): 217–225.  https://doi.org/10.1016/0168-9622(85)90019-3.Google Scholar
  3. Chen, S. Y., Yang, J. S., Li, Y., et al., 2009. Ultramafic Blocks in Sumdo Region, Lhasa Block, Eastern Tibet Plateau: An Ophiolite Unit. Journal of Earth Science, 20(2): 332–347.  https://doi.org/10.1007/s12583-009.0028-x Google Scholar
  4. Chen, Z. Y., Wang, D. H., Xu, J., et al., 2006. Preliminary Study of He, Ar Isotope Compositions of Quartz Veins in CCSD Main Hole. Acta Petrologica Sinica, 22(7): 1952–1956.(in Chinese with English Abstract)Google Scholar
  5. Chopin, C., 1984. Coesite and Pure Pyrope in High-Grade Blueschists of the Western Alps: A First Record and Some Consequences. Contributions to Mineralogy and Petrology, 86(2): 107–118.  https://doi.org/10.1007/bf00381838 Google Scholar
  6. Du, J. G., Zhang, J. Z., Sun, M. L., et al., 1998. Isotopic Composition of Helium in Eclogite from the Dabie Mountains, Central China and Its Geological Significance. Chinese Science Bulletin, 43(16): 1362–1366.  https://doi.org/10.1007/bf02883683 Google Scholar
  7. Dunai, T. J., Baur, H., 1995. Helium, Neon, and Argon Systematics of the European Subcontinental Mantle: Implications for Its Geochemical Evolution. Geochimica et Cosmochimica Acta, 59(13): 2767–2783.  https://doi.org/10.1016/0016-7037(95)00172-v Google Scholar
  8. Dunai, T. J., Stuart, F. M., Pik, R., et al., 2007. Production of 3He in Crustal Rocks by Cosmogenic Thermal Neutrons. Earth and Planetary Science Letters, 258(1/2): 228–236.  https://doi.org/10.1016/j.epsl.2007.03.031 Google Scholar
  9. Dunai, T. J., Touret, J. L. R., 1993. A Noble Gas Study of a Granulite Sample from the Nilgiri Hills, Southern India: Implications for Granulite Formation. Earth and Planetary Science Letters, 119(3): 271–281.  https://doi.org/10.1016/0012-821.(93)90138-y Google Scholar
  10. England, M. H., Maier-Reimer, E., 2001. Using Chemical Tracers to Assess Ocean Models. Reviews of Geophysics, 39(1): 29–70.  https://doi.org/10.1029/1998rg000043 Google Scholar
  11. Ernst, W. G., Liou, J. G., 1995. Contrasting Plate-Tectonic Styles of the Qinling-Dabie-Sulu and Franciscan Metamorphic Belts. Geology, 23(4): 353.  https://doi.org/10.1130/0091-7613(1995)023<0353:cptsot>2.3.co;2
  12. Farley, K. A., Neroda, E., 1998. Noble Gases in the Earth’s Mantle. Annual Review of Earth and Planetary Sciences, 26: 189–218.  https://doi.org/10.1146/annurev.earth.26.1.189 Google Scholar
  13. Gonzaga, R. G., Menzies, M. A., Thirlwall, M. F., et al., 2010. Eclogites and Garnet Pyroxenites: Problems Resolving Provenance Using Lu-Hf, Sm-Nd and Rb-Sr Isotope Systems. Journal of Petrology, 51(1/2): 513–535.  https://doi.org/10.1093/petrology/egp091 Google Scholar
  14. Graham, D. W., Christie, D. M., Harpp, K. S., et al., 1993. Mantle Plume Helium in Submarine Basalts from the Galapagos Platform. Science, 262(5142): 2023–2026.  https://doi.org/10.1126/science.262.5142.2023 Google Scholar
  15. He, H. Y., Zhu, R. X., Saxton, J., 2011. Noble Gas Isotopes in Corundum and Peridotite Xenoliths from the Eastern North China Craton: Implication for Comprehensive Refertilization of Lithospheric Mantle. Physics of the Earth and Planetary Interiors, 189(3/4): 185–191.  https://doi.org/10.1016/j.pepi.2011.09.001 Google Scholar
  16. Heier, K. S., 1963. Uranium, Thorium and Potassium in Eclogitic Rocks. Geochimica et Cosmochimica Acta, 27(8): 849–860.  https://doi.org/10.1016/0016-7037(63)90109-1.Google Scholar
  17. Hilton, D. R., Grönvold, K., Macpherson, C. G., et al., 1999. Extreme 3He/4He Ratios in Northwest Iceland: Constraining the Common Component in Mantle Plumes. Earth and Planetary Science Letters, 173(1/2): 53–60.  https://doi.org/10.1016/s0012-821.(99)00215.Google Scholar
  18. Honda, M., McDougall, I., Patterson, D. B., et al., 1991. Possible Solar Noble-Gas Component in Hawaiian Basalts. Nature, 349(6305): 149–151.  https://doi.org/10.1038/349149a0 Google Scholar
  19. Hu, R. Z., Burnard, P. G., Turner, G., et al., 1998. Helium and Argon Isotope Systematics in Fluid Inclusions of Machangqing Copper Deposit in West Yunnan Province, China. Chemical Geology, 146(1/2): 55–63.  https://doi.org/10.1016/s0009-2541(98)00003-5.Google Scholar
  20. Inguaggiato, S., Rizzo, A., 2004. Dissolved Helium Isotope Ratios in Ground-Waters: A New Technique Based on Gas-Water Re-Equilibration and Its Application to Stromboli Volcanic System. Applied Geochemistry, 19(5): 665–673.  https://doi.org/10.1016/j.apgeochem.2003.10.009 Google Scholar
  21. Jean-Baptiste, P., Fouquet, Y., 1996. Abundance and Isotopic Composition of Helium in Hydrothermal Sulfides from the East Pacific Rise at 13 °N. Geochimica et Cosmochimica Acta, 60(1): 87–93.  https://doi.org/10.1016/0016-7037(95)00357-6 Google Scholar
  22. Kurz, M. D., Jenkins, W. J., Hart, S. R., et al., 1983. Helium Isotopic Variations in Volcanic Rocks from Loihi Seamount and the Island of Hawaii. Earth and Planetary Science Letters, 66: 388–406.  https://doi.org/10.1016/0012-821x(83)90154-1.Google Scholar
  23. Li, S. F., Li, Y. H., Ding, T. P., et al., 2005. Helium Isotope Compositions and Forming Conditions of UHP Metamorphic Eclogites from the Dabie Mts. Terrane in East China. Geological Review, 51(3): 243–249.(in Chinese with English Abstract)Google Scholar
  24. Li, Y. H., Li, J. C., Song, H. B., et al., 2000. Helium Isotope Geochemistry of Ultrahigh-Pressure Metamorphic Eclogites from the Dabie-Sulu Terrane in East China. Acta Geologica Sinica English Edition), 74(1): 14–18.  https://doi.org/10.1111/j.1755-6724.2000.tb00427.x Google Scholar
  25. Li, Y. L., Zheng, Y. F., Fu, B., et al., 2001. Oxygen Isotope Composition of Quartz-Vein in Ultrahigh-Pressure Eclogite from Dabieshan and Implications for Transport of High-Pressure Metamorphic Fluid. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9/10): 695–704.  https://doi.org/10.1016/s1464-1895(01)00120-x Google Scholar
  26. Li, Z. L., Hu, R. Z., Peng, J. T., et al., 2006. Helium Isotope Geochemistry of Ore-Forming Fluids from Furong Tin Orefield in Hunan Province, China. Resource Geology, 56(1): 9–15.  https://doi.org/10.1111/j.1751-3928.2006.tb00263.x Google Scholar
  27. Li, Z. L., Yang, J. S., Xu, Z. Q., et al., 2009. Geochemistry and Sm-Nd and Rb-Sr Isotopic Composition of Eclogite in the Lhasa Terrane, Tibet, and Its Geological Significance. Lithos, 109(3/4): 240–247.  https://doi.org/10.1016/j.lithos.2009.01.004 Google Scholar
  28. Lucassen, F., Franz, G., Dulski, P., et al., 2011. Element and Sr Isotope Signatures of Titanite as Indicator of Variable Fluid Composition in Hydrated Eclogite. Lithos, 121(1/2/3/4): 12–24.  https://doi.org/10.1016/j.lithos.2010.09.018 Google Scholar
  29. Mamyrin, B. A., Tolstikhin, I. N., 1983. Helium Isotopes In Nature. Elsevier Scientific Publishing Company, AmsterdamGoogle Scholar
  30. Maruyama, S., Liou, J. G., Terabayashi, M., 1996. Blueschists and Eclogites of the World and Their Exhumation. International Geology Review, 38(6): 485–594.  https://doi.org/10.1080/00206819709465347 Google Scholar
  31. Matsumoto, T., Seta, A., Matsuda, J. I., et al., 2002. Helium in the Archean Komatiites Revisited: Significantly High 3He/4He Ratios Revealed by Fractional Crushing Gas Extraction. Earth and Planetary Science Letters, 196(3/4): 213–225.  https://doi.org/10.1016/s0012-821x(01)00602-1.Google Scholar
  32. Nagao, K., Takahashi, E., 1993. Noble Gases in the Mantle Wedge and Lower Crust: An Inference from the Isotopic Analyses of Xenoliths from Oki-Dogo and Ichinomegata, Japan. Geochemical Journal, 27(4/5): 229–240.  https://doi.org/10.2343/geochemj.27.229 Google Scholar
  33. Ozima, M., Podosek, F. A., 2002. Noble Gas Geochemistry, 2 Ed. Cambridge University Press, CambridgeGoogle Scholar
  34. Pan, G. T., Ding, J., Yao, D. S., et al., 2004. Geological Map of Qinghai-Xizang (Tibet) Plateau and Adjacent Areas (1: 1 500 000). Chengdu Cartographic Publishing House, Chengdu (in Chinese)Google Scholar
  35. Pan, G. T., Mo, X. X., Hou, Z. Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521–533. (in Chinese with English Abstract)Google Scholar
  36. Park, J., Okazaki, R., Nagao, K., 2003. Noble Gas Studies of Martian Meteorites: Dar al Gani 476/489, Sayh al Uhaymir 005/060, Dhofar 019, Los Angeles 001, and Zagami. The 34th Lunar and Planetary Science Conference, Houston. 1213Google Scholar
  37. Peacock, S. M., Hervig, R. L., 1999. Boron Isotopic Composition of Subduction-Zone Metamorphic Rocks. Chemical Geology, 160(4): 281–290.  https://doi.org/10.1016/s0009-2541(99)00103-5.Google Scholar
  38. Reinecke, T., 1998. Prograde High- To Ultrahigh-Pressure Metamorphism and Exhumation of Oceanic Sediments at Lago Di Cignana, Zermatt-Saas Zone, Western Alps. Lithos, 42(3/4): 147–189.  https://doi.org/10.1016/s0024-4937(97)00041-8.Google Scholar
  39. Selverstone, J., Wernicke, B. P., Aliberti, E. A., 1992. Intracontinental Subduction and Hinged Unroofing along the Salmon River Suture Zone, West Central Idaho. Tectonics, 11(1): 124–144.  https://doi.org/10.1029/91tc02418 Google Scholar
  40. Smith, D. C., 1984. Coesite in Clinopyroxene in the Caledonides and Its Implications for Geodynamics. Nature, 310(5979): 641–644.  https://doi.org/10.1038/310641a0 Google Scholar
  41. Stuart, F. M., Burnard, P. G., Taylor, R. P., et al., 1995. Resolving Mantle and Crustal Contributions to Ancient Hydrothermal Fluids: He-Ar Isotopes in Fluid Inclusions from Dae-Hwa-W-Mo Mineralization, South Korea. Geochimica et Cosmochimica Acta, 59(22): 4663–4673.  https://doi.org/10.1016/0016-7037(95)00300-2.Google Scholar
  42. Stuart, F. M., Turner, G., Duckworth, R. C., et al., 1994. Helium Isotopes as Tracers of Trapped Hydrothermal Fluids in Ocean-Floor Sulfides. Geology, 22(9): 823–826.  https://doi.org/10.1130/0091-7613(1994)022<0823:hiatot>2.3.co;2 Google Scholar
  43. Su, F., Xiao, Y., He, H. Y., et al., 2014. He and Ar Isotope Geochemistry of Pyroxene Megacrysts and Mantle Xenoliths in Cenozoic Basalt from the Changle-Linqu Area in Western Shandong. Chinese Science Bulletin, 59(4): 396–411.  https://doi.org/10.1007/s11434-013-0027-2.Google Scholar
  44. Tagiri, M., Yano, T., Bakirov, A., et al., 1995. Mineral Parageneses and Metamorphic P-T Paths of Ultrahigh-Pressure Eclogites from Kyrghyzstan Tien-Shan. The Island Arc, 4(4): 280–292.  https://doi.org/10.1111/j.1440-1738.1995.tb00150.x.Google Scholar
  45. Tolstikhin, I. N., O’Nions, R. K., 1994. The Earth’s Missing Xenon: A Combination of Early Degassing and of Rare Gas Loss from the Atmosphere. Chemical Geology, 115(1/2): 1–6.  https://doi.org/10.1016/0009-2541(94)90142-2.Google Scholar
  46. Torgersen, T., Jenkins, W. J., 1982. Helium Isotopes in Geothermal Systems: Iceland, the Geysers, Raft River and Steamboat Springs. Geochimica et Cosmochimica Acta, 46(5): 739–748.  https://doi.org/10.1016/0016-7037(82)90025-4.Google Scholar
  47. Turner, G., Burnard, P., Ford, J., et al., 1993. Tracing Fluid Sources and Interactions. Philosophical Transactions of the Royal Society of London, Series A: Physical and Engineering Sciences, 344: 127–140.Google Scholar
  48. Xia, B., Yang, Q., Chen, N. S., et al., 2018. Phase Equilibrium Modeling of Retrograded Eclogite at the Kekesu Valley, Eastern Segment of SW Tianshan Orogen and Tectonic Implications. Journal of Earth Science, 29(5): 1060–1073.  https://doi.org/10.1007/s12583-018-0844-y.Google Scholar
  49. Xu, R. H., Schärer, U., Allègre, C. J., 1985. Magmatism and Metamorphism in the Lhasa Block (Tibet): A Geochronological Study. The Journal of Geology, 93(1): 41–57.  https://doi.org/10.1086/628918 Google Scholar
  50. Xu, X. Z., Yang, J. S., Li, T. F., et al., 2007. SHRIMP U-Pb Ages and Inclusions of Zircons from the Sumdo Eclogite in the Lhasa Block, Tibet. Geological Bulletin of China, 26: 1340–1355.(in Chinese with English Abstract)Google Scholar
  51. Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2006. The Qinghai-Tibet Plateau and Continental Dynamics: A Review of Terrain Tectonics, Collisional Orogenesis, and Processes and Mechanisms for the Rise of the Plateau. Geology in China, 33: 221–238.(in Chinese with English Abstract)Google Scholar
  52. Yang, J. S., Xu, Z. Q., Geng, Q. R., et al., 2006. A Possible New HP/UHP(?) Metamorphic Belt in China: Discovery of Eclogite in the Lasha Terrane, Tibet. Acta Geologica Sinica, 80: 1787–1792. (in Chinese with English Abstract)Google Scholar
  53. Yang, J. S., Xu, Z. Q., Li, Z. L., et al., 2009. Discovery of an Eclogite Belt in the Lhasa Block, Tibet: A New Border for Paleo-Tethys?. Journal of Asian Earth Sciences, 34(1): 76–89.  https://doi.org/10.1016/j.jseaes.2008.04.001 Google Scholar
  54. Ye, X. R., Tao, M. X., Yu, C. N., et al., 2007. Helium and Neon Isotopic Compositions in the Ophiolites from the Yarlung Zangbo River, Southwestern China: The Information from Deep Mantle. Science in China Series D: Earth Sciences, 50(6): 801–812.  https://doi.org/10.1007/s11430-007-0017-9.Google Scholar
  55. Zhai, Q. G., Cai, L., Huang, X. P., 2007. The Fragment of Paleo-Tethys Ophiolite from Central Qiangtang, Tibet: Geochemical Evidence of Metabasites in Guoganjianian. Science in China Series D: Earth Sciences, 50(9): 1302–1309.  https://doi.org/10.1007/s11430-007-0051-7.Google Scholar
  56. Zhang, J. X., Yang, J. S., Shi, R. D., et al., 2002. Evidence for UHP Metamorphism of Eclogites from the Altun Mountains. Chinese Science Bulletin, 47(9): 751–755.  https://doi.org/10.1360/02tb9170 Google Scholar
  57. Zheng, Y. C., Chan, K. L., Tsang, K. T., et al., 2019. Analysis of Chang’e-2 Brightness Temperature Data and Production of High Spatial Resolution Microwave Maps of the Moon. Icarus, 319: 627–644.  https://doi.org/10.1016/j.icarus.2018.09.036 Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of GeologyChinese Academy of Geological SciencesBeijingChina

Personalised recommendations