Advertisement

Journal of Earth Science

, Volume 30, Issue 3, pp 451–459 | Cite as

Hypervelocity Impacts and Exposed Lithospheric Mantle: A Way to Recognize Large Terrestrial Impact Basins?

  • Peter OldsEmail author
Special Issue on Ophiolite, Orogenic Magmatism and Metamorphism Dedicated to IGCP 649: Diamonds and Recycled Mantle
  • 3 Downloads

Abstract

On the Moon and Mars olivine of probable mantle origin is detected at rims of large Late Heavy Bombardment (LHB) age impact basins for which excavation depth estimates exceed crustal thickness estimates. But lunar Crisium size impact basins are not recognized on Earth nor expected in the Phanerozoic from conventional interpretations of crater size frequency distributions. In this study several large circular to elliptical basin structures on Earth, for which hypothesized impact excavation depth would greatly exceed crustal thickness, are examined for the presence of exposed lithospheric mantle, expressed as ophiolite, at the rims. Three Phanerozoic impact basins, modified by plate tectonics and tentatively correlated with “ophiolite obduction” plus global extinction events, are proposed here. These tentatively suggested Phanerozoic impact basins are: (1) Yucatan Basin/Puerto Rico Trench with a Greater Antilles ophiolite rim. Cretaceous-Paleogene Boundary global extinction may correlate with Maastrichtian ophiolite obduction in Southeast Cuba. (2) Loyalty Basin with a New Caledonia ophiolite plus d’Entrecasteaux Ridge rim. Late Eocene global extinction may correlate with obduction of the New Caledonia Peridotite Nappe. (3) Sulu Sea Basin with a Palawan, Sabah etc. ophiolite rim. The Middle Miocene Disruption Event may correlate with ophiolite obduction plus ophiolitic mélange emplacement in Sabah and in Palawan. These originally circular to elliptical belts of exposed lithospheric mantle may serve as strain markers for relative plate motions in the vicinity of plate boundaries during post-impact geologic times. It is further speculated that plate boundaries may be initiated and/or modified by such impacts.

Key Words

olivine mantle impact basin ophiolite obduction mass extinction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Bob Coleman, Norm Sleep, Jingsui Yang, Manuel Iturralde-Vinent, Angelica Isabel Llanes Castro, Dominique Cluzel, Jonathan Aitcheson, Dave Walker, Sarah Stewart, Jay Melosh, Michael Manga, Bruce Bohor, Bruce Buffett, Walter Alvarez, Alicia Cowart, Jaime Urrutia, Mark Richards, Steve Self, Max Rudolph, Brook Peterson, John Wakabayashi, Raymond Jeanloz, Roland Burgmann, Inez Fung, Tim Teague, Bob Grill, Diane Tompkins, Mark Greenside, Qingzhu Yin, Matt Sanborn, Al Verstuyf, Paul Henshaw, Linda Swift, Rodney Yee, Siri Brown, Wise Allen, Maurice Jones, Rochelle Olive, Char Perlas, Tim Karas, and my students are all acknowledged. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1225-x.

References Cited

  1. Alvarez, L. W., Alvarez, W., Asaro, F., et al., 1980. Extraterrestrial Cause for the Cretaceous-Tertiary Extinction. Science, 208(4448): 1095–1108.  https://doi.org/10.1126/science.208.4448.1095 CrossRefGoogle Scholar
  2. Aurelio, M. A., Peña, R. E., Taguibao, K. J. L., 2013. Sculpting the Philippine Archipelago since the Cretaceous through Rifting, Oceanic Spreading, Subduction, Obduction, Collision and Strike-Slip Faulting: Contribution to IGMA5000. Journal of Asian Earth Sciences, 72: 102–107.  https://doi.org/10.1016/j.jseaes.2012.10.007 CrossRefGoogle Scholar
  3. Bohor, B., Betterton, W., Foord, E., 1990. Shocked Zircon and Chromite in K/T Boundary Claystones. Meteoritics, 25: 350Google Scholar
  4. Clennell, B., 1991. The Origin and Tectonic Significance of Mélanges in Eastern Sabah, Malaysia. Journal of Southeast Asian Earth Sciences, 6(3/4): 407–429.  https://doi.org/10.1016/0743-9547(91)90085-c CrossRefGoogle Scholar
  5. Cluzel, D., Aitchison, J. C., Picard, C., 2001. Tectonic Accretion and Underplating of Mafic Terranes in the Late Eocene Intraoceanic Fore-Arc of New Caledonia (Southwest Pacific): Geodynamic Implications. Tectonophysics, 340(1/2): 23–59.  https://doi.org/10.1016/s0040-1951(01)00148-2 CrossRefGoogle Scholar
  6. Coleman, R. G., 1971. Plate Tectonic Emplacement of Upper Mantle Peridotites along Continental Edges. Journal of Geophysical Research, 76(5): 1212–1222.  https://doi.org/10.1029/jb076i005p01212 CrossRefGoogle Scholar
  7. Collins, G. S., Rae, A. S., Morgan, J. V., et al., 2018. The Formation of Peak Rings in Large Impact Craters. EGU General Assembly Conference Abstracts. Geophysical Research Abstracts, 20: EGU2018–16300Google Scholar
  8. DeMets, C., Gordon, R. G., Argus, D. F., 2010. Geologically Current Plate Motions. Geophysical Journal International, 181(1): 1–80.  https://doi.org/10.1111/j.1365-246x.2009.04491.x CrossRefGoogle Scholar
  9. Fassett, C. I., Minton, D. A., 2013. Impact Bombardment of the Terrestrial Planets and the Early History of the Solar System. Nature Geoscience, 6(7): 520–524.  https://doi.org/10.1038/ngeo1841 CrossRefGoogle Scholar
  10. García-Casco, A., Iturralde-Vinent, M. A., Pindell, J., 2008. Latest Cretaceous Collision/Accretion between the Caribbean Plate and Caribeana: Origin of Metamorphic Terranes in the Greater Antilles. International Geology Review, 50(9): 781–809.  https://doi.org/10.2747/0020-6814.50.9.781 CrossRefGoogle Scholar
  11. Gautier, P., Quesnel, B., Boulvais, P., et al., 2016. The Emplacement of the Peridotite Nappe of New Caledonia and Its Bearing on the Tectonics of Obduction. Tectonics, 35(12): 3070–3094.  https://doi.org/10.1002/2016tc004318 CrossRefGoogle Scholar
  12. Goto, K., Tada, R., Tajika, E., et al., 2008. Lateral Lithological and Compositional Variations of the Cretaceous/Tertiary Deep-Sea Tsunami Deposits in Northwestern Cuba. Cretaceous Research, 29(2): 217–236.  https://doi.org/10.1016/j.cretres.2007.04.004 CrossRefGoogle Scholar
  13. Grieve, R. A. F., Cintala, M. J., 1992. An Analysis of Differential Impact Melt-Crater Scaling and Implications for the Terrestrial Impact Record. Meteoritics, 27(5): 526–538.  https://doi.org/10.1111/j.1945-5100.1992.tb01074.x CrossRefGoogle Scholar
  14. Grieve, R. A. F., Reimold, W. U., Morgan, J., et al., 2008. Observations and Interpretations at Vredefort, Sudbury, and Chicxulub: Towards an Empirical Model of Terrestrial Impact Basin Formation. Meteoritics & Planetary Science, 43(5): 855–882.  https://doi.org/10.1111/j.1945-5100.2008.tb01086.x CrossRefGoogle Scholar
  15. Guillon, J.-H., 1975. Les Massifs Péridotitiques de Nouvelle-Calédonie: Type d’appareil Ultrabasique Stratiforme de Chaîne Récente, IRD Editions. ORSTOM, Paris. 120Google Scholar
  16. Head, J. W., 2010. Transition from Complex Craters to Multi-Ringed Basins on Terrestrial Planetary Bodies: Scale-Dependent Role of the Expanding Melt Cavity and Progressive Interaction with the Displaced Zone. Geophysical Research Letters, 37(2).  https://doi.org/10.1029/2009gl041790
  17. Holsapple, K. A., 1993. The Scaling of Impact Processes in Planetary Sciences. Annual Review of Earth and Planetary Sciences, 21(1): 333–373.  https://doi.org/10.1146/annurev.ea.21.050193.002001 CrossRefGoogle Scholar
  18. Hutchison, C. S., 1992. The Southeast Sulu Sea, a Neogene Marginal Basin with Outcropping Extensions in Sabah. Geological Society of Malaysia Bulletin, 32: 89–108Google Scholar
  19. Iturralde-Vinent, M. A., 1992. A Short Note on the Cuban Late Maastrichtian Megaturbidite (an Impact-Derived Deposit?). Earth and Planetary Science Letters, 109(1/2): 225–228.  https://doi.org/10.1016/0012-821x(92)90085-a Google Scholar
  20. Iturralde-Vinent, M., Díaz-Otero, C., Vega, R., et al., 2006. Tectonic Implications of Paleontologic Dating of Cretaceous-Danian Sections of Eastern Cuba. Geologica Acta, 4(1/2).  https://doi.org/10.1344/105.000000359
  21. Ivanov, B., Neukum, G., Bottke, W., et al., 2002. The Comparison of Size-Frequency Distributions of Impact Craters and Asteroids and the Planetary Cratering Rate. Asteroids III, 1: 89–101Google Scholar
  22. Johnson, B. C., Melosh, H. J., 2012. Impact Spherules as a Record of an Ancient Heavy Bombardment of Earth. Nature, 485(7396): 75–77.  https://doi.org/10.1038/nature10982 CrossRefGoogle Scholar
  23. Johnson, B. C., Collins, G. S., Minton, D. A., et al., 2016. Spherule Layers, Crater Scaling Laws, and the Population of Ancient Terrestrial Impactors. Icarus, 271: 350–359.  https://doi.org/10.1016/j.icarus.2016.02.023 CrossRefGoogle Scholar
  24. Karimi, S., Dombard, A. J., 2017. Studying Lower Crustal Flow beneath Mead Basin: Implications for the Thermal History and Rheology of Venus. Icarus, 282: 34–39.  https://doi.org/10.1016/j.icarus.2016.09.015 CrossRefGoogle Scholar
  25. Keenan, T. E., Encarnación, J., Buchwaldt, R., et al., 2016. Rapid Conversion of an Oceanic Spreading Center to a Subduction Zone Inferred from High-Precision Geochronology. Proceedings of the National Academy of Sciences, 113(47): E7359–E7366. https://doi.org/10.1073/pnas.1609999113 url }CrossRefGoogle Scholar
  26. Kenkmann, T., Poelchau, M. H., Wulf, G., 2014. Structural Geology of Impact Craters. Journal of Structural Geology, 62: 156–182.  https://doi.org/10.1016/j.jsg.2014.01.015 CrossRefGoogle Scholar
  27. Koeppen, W. C., Hamilton, V. E., 2008. Global Distribution, Composition, and Abundance of Olivine on the Surface of Mars from Thermal Infrared Data. Journal of Geophysical Research, 113(E5).  https://doi.org/10.1029/2007je002984
  28. Leroy, S., Mauffret, A., Patriat, P., et al., 2000. An Alternative Interpretation of the Cayman Trough Evolution from a Reidentification of Magnetic Anomalies. Geophysical Journal International, 141(3): 539–557.  https://doi.org/10.1046/j.1365-246x.2000.00059.x CrossRefGoogle Scholar
  29. Maus, S., Barckhausen, U., Berkenbosch, H., et al., 2009. EMAG2: A 2-Arc Min Resolution Earth Magnetic Anomaly Grid Compiled from Satellite, Airborne, and Marine Magnetic Measurements. Geochemistry, Geophysics, Geosystems, 10(8).  https://doi.org/10.1029/2009gc002471
  30. McGetchin, T. R., Settle, M., Head, J. W., 1973. Radial Thickness Variation in Impact Crater Ejecta: Implications for Lunar Basin Deposits. Earth and Planetary Science Letters, 20(2): 226–236.  https://doi.org/10.1016/0012-821x(73)90162-3 CrossRefGoogle Scholar
  31. Melosh, H. J., 1989. Impact Cratering: A Geologic Process. Oxford University Press, New York. 253Google Scholar
  32. Morgan, J. V., Gulick, S. P. S., Bralower, T., et al., 2016. The Formation of Peak Rings in Large Impact Craters. Science, 354(6314): 878–882.  https://doi.org/10.1126/science.aah6561 CrossRefGoogle Scholar
  33. Mortimer, N., Gans, P. B., Palin, J. M., et al., 2014. Eocene and Oligocene Basins and Ridges of the Coral Sea-New Caledonia Region: Tectonic Link between Melanesia, Fiji, and Zealandia. Tectonics, 33(7): 1386–1407.  https://doi.org/10.1002/2014tc003598 CrossRefGoogle Scholar
  34. Neumann, G. A., Zuber, M., Wieczorek, M., et al., 2004. Crustal Structure of Mars from Gravity and Topography. Journal of Geophysical Research, 109(E8).  https://doi.org/10.1029/2004je002262
  35. Nichols, G., Betzler, C., Brass, G., et al., 1990. Depositional History of the Sulu Sea from ODP Sites 768, 769 and 771. Geophysical Research Letters, 17(11): 2065–2068.  https://doi.org/10.1029/gl017i011p02065 CrossRefGoogle Scholar
  36. Omang, S. A. K., Barber, A. J., 1996. Origin and Tectonic Significance of the Metamorphic Rocks Associated with the Darvel Bay Ophiolite, Sabah, Malaysia. Geological Society, London, Special Publications, 106(1): 263–279.  https://doi.org/10.1144/gsl.sp.1996.106.01.17 CrossRefGoogle Scholar
  37. O’Neill, C., Marchi, S., Zhang, S., et al., 2017. Impact-Driven Subduction on the Hadean Earth. Nature Geoscience, 10(10): 793–797.  https://doi.org/10.1038/ngeo3029 CrossRefGoogle Scholar
  38. Paquette, J. L., Cluzel, D., 2007. U-Pb Zircon Dating of Post-Obduction Volcanic-Arc Granitoids and a Granulite-Facies Xenolith from New Caledonia. Inference on Southwest Pacific Geodynamic Models. International Journal of Earth Sciences, 96(4): 613–622.  https://doi.org/10.1007/s00531-006-0127-1 CrossRefGoogle Scholar
  39. Pierazzo, E., Vickery, A. M., Melosh, H. J., 1997. A Reevaluation of Impact Melt Production. Icarus, 127(2): 408–423.  https://doi.org/10.1006/icar.1997.5713 CrossRefGoogle Scholar
  40. Potter, R. W. K., 2015. Investigating the Onset of Multi-Ring Impact Basin Formation. Icarus, 261: 91–99.  https://doi.org/10.1016/j.icarus.2015.08.009 CrossRefGoogle Scholar
  41. Potter, R. W. K., Kring, D. A., Collins, G. S., et al., 2013. Numerical Modeling of the Formation and Structure of the Orientale Impact Basin. Journal of Geophysical Research: Planets, 118(5): 963–979.  https://doi.org/10.1002/jgre.20080 Google Scholar
  42. Quinn, T., 1994. Strontium-Isotopic Dating of Neritic Carbonates at Bougainville Guyot (Site 831), New Hebrides Island Arc. Proceedings of Ocean Drilling Program, Scientific Results, 134: 89–95Google Scholar
  43. Rosencrantz, E., 1990. Structure and Tectonics of the Yucatan Basin, Caribbean Sea, as Determined from Seismic Reflection Studies. Tectonics, 9(5): 1037–1059.  https://doi.org/10.1029/tc009i005p01037 CrossRefGoogle Scholar
  44. Rosencrantz, E., Mann, P., 1991. SeaMARC II Mapping of Transform Faults in the Cayman Trough, Caribbean Sea. Geology, 19(7): 690.  https://doi.org/10.1130/0091-7613(1991)019<0690:simotf>2.3.co;2 CrossRefGoogle Scholar
  45. Schultz, P., 1999. Ejecta Distribution from Oblique Impacts into Particulate Targets. 30th Annual Lunar and Planetary Science Conference. 15–29 March, 1999, Houston, TX. 1919Google Scholar
  46. Sleep, N. H., Lowe, D. R., 2014. Physics of Crustal Fracturing and Chert Dike Formation Triggered by Asteroid Impact, ~3.26 Ga, Barberton Greenstone Belt, South Africa. Geochemistry, Geophysics, Geosystems, 15(4): 1054–1070.  https://doi.org/10.1002/2014gc005229 Google Scholar
  47. Sleep, N. H., Zahnle, K., 1998. Refugia from Asteroid Impacts on Early Mars and the Early Earth. Journal of Geophysical Research: Planets, 103(E12): 28529–28544.  https://doi.org/10.1029/98je01809 CrossRefGoogle Scholar
  48. Spudis, P. D., 2005. The Geology of Multi-Ring Impact Basins: The Moon and Other Planets. Cambridge University Press, CambridgeGoogle Scholar
  49. Tada, R., Iturralde-Vinent, M. A., Matsui, T., et al., 2003. K/T Boundary Deposits in the Paleo-Western Caribbean Basin. In: Bartolini, C., Buffler, R. T., Blickwede, J., eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation, and Plate Tectonics. AAPG Memoir, 79: 582–604Google Scholar
  50. Turtle, E., Pierazzo, E., Collins, G., et al., 2005. Impact Structures: What does Crater Diameter Mean. In: Kenkmann, T., Hörz, F., Deutsch, A., eds., Large Meteorite Impacts III. The Geological Society of America, 384: 1–24Google Scholar
  51. Urrutia-Fucugauchi, J., Morgan, J., Stöffler, D., et al., 2004. The Chicxulub Scientific Drilling Project (CSDP). Meteoritics & Planetary Science, 39(6): 787–790.  https://doi.org/10.1111/j.1945-5100.2004.tb00928.x CrossRefGoogle Scholar
  52. Ward, W. C., Keller, G., Stinnesbeck, W., et al., 1995. Yucatán Subsurface Stratigraphy: Implications and Constraints for the Chicxulub Impact. Geology, 23(10): 873–876.  https://doi.org/10.1130/0091-7613(1995)023<0873:ynssia>2.3.co;2 CrossRefGoogle Scholar
  53. Wieczorek, M. A., Neumann, G. A., Nimmo, F., et al., 2013. The Crust of the Moon as Seen by GRAIL. Science, 339(6120): 671–675CrossRefGoogle Scholar
  54. Yamamoto, S., Nakamura, R., Matsunaga, T., et al., 2010. Possible Mantle Origin of Olivine around Lunar Impact Basins Detected by SELENE. Nature Geoscience, 3(8): 533–536.  https://doi.org/10.1038/ngeo897 CrossRefGoogle Scholar
  55. Yang, J. S., Robinson, P. T., Dilek, Y., 2014. Diamonds in Ophiolites. Elements, 10(2): 127–130.  https://doi.org/10.2113/gselements.10.2.127 CrossRefGoogle Scholar
  56. Yumul, G. P. Jr., Dimalanta, C. B., Maglambayan, V. B., et al., 2008. Tectonic Setting of a Composite Terrane: A Review of the Philippine Island Arc System. Geosciences Journal, 12(1): 7–17.  https://doi.org/10.1007/s12303-008-0002-0 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry FacultyCollege of AlamedaAlamedaUSA

Personalised recommendations