Advertisement

Journal of Earth Science

, Volume 30, Issue 3, pp 431–450 | Cite as

Heterogeneity of Mantle Peridotites from the Polar Urals (Russia): Evidence from New LA-ICP-MS Data

  • Vladimir R. ShmelevEmail author
  • Shoji Arai
  • Akihiro Tamura
Special Issue on Ophiolite, Orogenic Magmatism and Metamorphism Dedicated to IGCP 649: Diamonds and Recycled Mantle
  • 4 Downloads

Abstract

To discuss the nature of the compositional heterogeneity of the peridotite massifs of the Polar Urals (Russia), the geochemical study by LA-ICP-MS of pyroxenes and amphiboles from these mantle formations was performed. The trace element compositions in clinopyroxenes indicate the existence of the mantle protolith of two types. The first protolith type, represented by lherzolites and diopside harzburgites, was originated from the partial melting (5%–10%) under the spinel fades conditions, while the second one, represented by diopside harzburgites, was formed under the polybaric partial melting (17%–19%) under garnet and spinel fades conditions. Subsequently, the mantle peridotite protolith was subject to fluid-induced partial melting in the suprasubduction setting that was resulted in the formation of harzburgites. Being affected by penetrating melts and fluids peridotites experienced the refertilization (LREE enrichment of clinopyroxenes) and high-temperature hydratation with subsequent development of pargasite and Mg amphibole. The high-T fluid-induced metamorphism at the subduction zone was accompanied by the formation of metaperidotites with clinochlore and REE-depleted tremolite.

Keywords

pyroxene amphibole peridotite LA-ICP-MS Polar Urals Russia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We are grateful to Dr. Mohamed Zaki Khedr (Kanazawa University, Japan) for assistance in performing analytical studies, as well as Vladimir G. Kotelnikov (Federal State Institution “VSEGEI”, St. Petersburg, Russia) and Dmitriy V. Kuznetsov (Institute of Geology and Geochemistry UB RAS, Yekaterinburg, Russia) for their assistance in carrying out field works in the Polar Urals. We are very grateful to the reviewers for their constructive comments that have been very helpful in improving the manuscript. This study was carried out within the framework of the Project IGCP-649 and the IGG UB RAS (No. AAAA-A18-118052590029-6). The final publication is available at Springer via https://doi.org/10.1007/sl2583-019-1224-y.

Supplementary material

12583_2019_1224_MOESM1_ESM.xlsx (22 kb)
Supplementary material, approximately 21.5 KB.

References Cited

  1. Asimow, P. D., Stolper, E. M., 1999. Steady-State Mantle-Melt Interactions in one Dimension: I. Equilibrium Transport and Melt Focusing. Journal of Petrology, 40(3): 475–494.  https://doi.org/10.1093/petroj/403.475 CrossRefGoogle Scholar
  2. Arai, S., 1994. Characterization of Spinel Peridotites by Olivine-Spinel Compositional Relationships: Review and Interpretation. Chemical Geology, 113(3/4): 191–204.  https://doi.org/10.1016/0009-2541(94)90066-3 CrossRefGoogle Scholar
  3. Arai, S., Miura, M., 2016. Formation and Modification of Chromitites in the Mantle. Lithos, 264: 277–295.  https://doi.org/10.1016/j.lithos.2016.08.039 CrossRefGoogle Scholar
  4. Batanova, V. G., Belousov, I. A., Savelieva, G. N., et al., 2011. Consequences of Channelized and Diffuse Melt Transport in Supra-Subduction Zone Mantle: Evidence from the Voykar Ophiolite (Polar Urals). Journal of Petrology, 52(12): 2483–2521.  https://doi.org/10.1093/petrology/egr053 CrossRefGoogle Scholar
  5. Belousov, I. A., Batanova, V. G., Savelieva, G. N., et al., 2009. Evidence for the Suprasubduction Origin of Mantle Section Rocks of Voykar Ophiolite, Polar Urals. Doklady Earth Sciences, 429(1): 1394–1398.  https://doi.org/10.1134/sl028334x09080340 CrossRefGoogle Scholar
  6. Bizimis, M., Salters, V. J. M., Bonatti, E., 2000. Trace and REE Content of Clinopyroxenes from Supra-Subduction Zone Peridotites. Implications for Melting and Enrichment Processes in Island Arcs. Chemical Geology, 165(1/2): 67–85.  https://doi.org/10.1016/s0009-2541(99)00164-3 CrossRefGoogle Scholar
  7. Chashchukhin, I. S., Votyakov, S. L., Shchapova, Y. V., 2007. Crystal Chemistry of Spinel and Oxythermobarometry of Ultramafic Rocks from Fold Areas. IGG UrO RAN, Yekaterinburg. 310 (in Russian)Google Scholar
  8. Coltorti, M., Bonadiman, C., Faccini, B., et al., 2007. Amphiboles from Suprasubduction and Intraplate Lithospheric Mantle. Lithos, 99(1/2): 68–84.  https://doi.org/10.1016/j.lithos.2007.05.009 CrossRefGoogle Scholar
  9. Dick, H. J. B., Bullen, T., 1984. Chromian Spinel as a Petrogenetic Indicator in Abyssal and Alpine-Type Peridotites and Spatially Associated Lavas. Contributions to Mineralogy and Petrology, 86(1): 54–76.  https://doi.org/10.1007/bf00373711 CrossRefGoogle Scholar
  10. Dobretsov, N. L., Moldavantsev, J. E., Kazak, A. P., et al., 1977. Petrology and Metamorphism of Ancient Pphiolites: Evidence from the Polar Urals and Western Sayan. Novosibirsk, Nauka. 217 (in Russian)Google Scholar
  11. Hellebrand, E., Snow, J. E., Dick, H. J. B., et al., 2001. Coupled Major and Trace Elements as Indicators of the Extent of Melting in Mid-Ocean-Ridge Peridotites. Nature, 410(6829): 677–681.  https://doi.org/10.1038/35070546 CrossRefGoogle Scholar
  12. Hellebrand, E., Snow, J. E., Hoppe, P., et al., 2002. Garnet-Field Melting and Late-Stage Refertilization in “Residual” Abyssal Peridotites from the Central Indian Ridge. Journal of Petrology, 43(12): 2305–2338.  https://doi.org/10.1093/petrology/43.12.2305 CrossRefGoogle Scholar
  13. Ishida, Y., Morishita, T., Arai, S., et al., 2004. Simultaneous in-situ Multi-Element Analysis of Minerals on Thin Section Using LA-ICP-MS. The Science Reports of Kanazawa University, 48: 31–42Google Scholar
  14. Ishii, T., Robinson, P. T., Maekawa, H., et al., 1992. Petrological Studies of Peridotites from Diapiric Serpentinite Seamounts in the Izu-Ogazawara-Mariana Forearc, LEG 125. Proceeding of the Ocean Drilling Program, Scientific Results, 125: 445–485.  https://doi.org/10.2973/odp.proc.sr.125.129.1992 Google Scholar
  15. Jean, M. M., Shervais, J. W., Choi, S. H., et al., 2010. Melt Extraction and Melt Refertilization in Mantle Peridotite of the Coast Range Ophiolite: An LA-ICP-MS Study. Contributions to Mineralogy and Petrology, 159(1): 113–136.  https://doi.org/10.1007/s00410-009-0419-0 CrossRefGoogle Scholar
  16. Johnson, K. T. M., Dick, H. J. B., Shimizu, N., 1990. Melting in the Oceanic Upper Mantle: An Ion Microprobe Study of Diopsides in Abyssal Peridotites. Journal of Geophysical Research, 95(B3): 2661–2678.  https://doi.org/10.1029/jb095ib03p02661 CrossRefGoogle Scholar
  17. Johnson, K. T. M., Dick, H. J. B., 1992. Open System Melting and Temporal and Spatial Variation of Peridotite and Basalt at the Atlantis II Fracture Zone. Journal of Geophysical Research, 97(B6): 9219–9241.  https://doi.org/10.1029/92jb00701 CrossRefGoogle Scholar
  18. Kelemen, P. B., Shimizu, N., Dunn, T., 1993. Relative Depletion of Niobium in some Arc Magmas and the Continental Crust: Partitioning of K, Nb, La and Ce during Melt/rock Reaction in the Upper Mantle. Earth and Planetary Science Letters, 120(3/4): 111–134.  https://doi.org/10.1016/0012-821x(93)90234-z CrossRefGoogle Scholar
  19. Kelemen, P. B., Hirth, G., Shimizu, N., et al., 1997. A Review of Melt Migration Processes in the Adiabatically Upwelling Mantle beneath Oceanic Spreading Ridges. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 355(1723): 283–318.  https://doi.org/10.1098/rsta.1997.0010 CrossRefGoogle Scholar
  20. Khedr, M. Z., Arai, S., Tamura, A., et al., 2010. Clinopyroxenes in High-P Metaperidotites from Happo-O’ne, Central Japan: Implications for Wedge-Transversal Chemical Change of Slab-Derived Fluids. Lithos, 119(3/4): 439–456.  https://doi.org/10.1016/j.lithos.2010.07.021 CrossRefGoogle Scholar
  21. Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazine, 61(405): 295–310.  https://doi.org/10.1180/minmag.1997.061.405.13 CrossRefGoogle Scholar
  22. Longerich, H. P., Jackson, S. E., Günther, D., 1996. Inter-Laboratory Note. Laser Ablation Inductively Coupled Plasma Mass Spectrometric Transient Signal Data Acquisition and Analyte Concentration Calculation. Journal of Analutical Atomic Spectrometry, 11(9): 899–904.  https://doi.org/10.1039/ja9961100899 CrossRefGoogle Scholar
  23. Makeev, A. B., Perevozchikov, B. V., Afanasiev, A. K., 1985. Chromite Potential of the Polar Urals. Komi Fil. USSR Acad. Sci., Siktivkar. 152 (in Russian)Google Scholar
  24. Morishita, T., Ishida, Y., Arai, S., et al., 2005. Determination of Multiple Trace Element Compositions in Thin (> 30 μm) Layers of NIST SRM 614 and 616 Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). Geostandards and Geoanalytical Research, 29(1): 107–122.  https://doi.org/10.1111/j.1751-908x.2005.tb00659.x CrossRefGoogle Scholar
  25. Muntener, O., Manatschal, G., Desmurs, L., et al., 2010. Plagioclase Peridotites in Ocean-Continent Transitions: Refertilized Mantle Domains Generated by Melt Stagnation in the Shallow Mantle Lithosphere. Journal of Petrology, 51(1/2): 255–294. https://doi.org/10.1093/petrology/egp087 CrossRefGoogle Scholar
  26. McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253.  https://doi.org/10.1016/0009-2541(94)00140-4 CrossRefGoogle Scholar
  27. Niu, Y. L., 2004. Bulk-Rock Major and Trace Element Compositions of Abyssal Peridotites: Implications for Mantle Melting, Melt Extraction and Post-Melting Processes beneath Mid-Ocean Ridges. Journal of Petrology, 45(12): 2423–2458.  https://doi.org/10.1093/petrology/egh068 CrossRefGoogle Scholar
  28. Parkinson, I. J., Pearce, J. A., Thirwall, M. F., et al., 1992. Trace Element Geochemistry of Peridotites from the Izu-Bonin-Mariana Forearc, Leg 125. In: Fryer, P., Pearce, J. A, Stokking, L. B., eds., Proceedings of the Ocean Drilling Program: Scientific Results. 487–506.  https://doi.org/10.2973/odp.proc.sr.125.183.1992 Google Scholar
  29. Peacock, S. M., Wang, K., 1999. Seismic Consequences of Warm Versus Cool Subduction Metamorphism: Examples from Southwest and Northeast Japan. Science, 286(5441): 937–939.  https://doi.org/10.1126/science.286.5441.937 CrossRefGoogle Scholar
  30. Pearce, N. J. G., Perkins, W. T., Westgate, J. A., et al., 1997. A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostandards and Geoanalytical Research, 21(1): 115–144.  https://doi.org/10.1111/j.1751-908x.1997.tb00538.x CrossRefGoogle Scholar
  31. Pearce, J. A., Barker, P. F., Edwards, S. J., et al., 2000. Geochemistry and Tectonic Significance of Peridotites from the South Sandwich Arc-Basin System, South Atlantic. Contributions to Mineralogy and Petrology, 139(1): 36–53.  https://doi.org/10.1007/s004100050572 CrossRefGoogle Scholar
  32. Perevozchikov, B. V., Kenig, V. V., Lukin, A. A., et al., 2005. Chromites of the Rai-Iz Massif in the Polar Urals (Russia). Geology of Ore Deposits, 47: 206–222Google Scholar
  33. Pertsev, A. N., Savelieva, G. N., Simakin, S. G., 2003. Primary Melts Imprinted in Plutonic Rocks of the Voykar Ophiolite: Evidences from Clinopyroxene Geochemistry. Ofioliti, 28: 33–41.  https://doi.org/10.4454/ofioliti.v28i1.188 Google Scholar
  34. Remizov, D. N., Grigoriev, S. I., Petrov, S. Y., et al., 2010. New Age Datings of Gabbroides of the Kershor Complex (Polar Urals). Doklady Earth Sciences, 434(1): 1235–1239.  https://doi.org/10.1134/s1028334x10090205 CrossRefGoogle Scholar
  35. Salters, V. J. M., Stracke, A., 2004. Composition of the Depleted Mantle. Geochemistry, Geophysics, Geosystems, 5(5): Q05004.  https://doi.org/10.1029/2003gc000597 CrossRefGoogle Scholar
  36. Sano, S., Kimura, J. I., 2007. Clinopyroxene REE Geochemistry of the Red Hills Peridotite, New Zealand: Interpretation of Magmatic Processes in the Upper Mantle and in the Moho Transition Zone. Journal of Petrology, 48(1): 113–139.  https://doi.org/10.1093/petrology/egl056 CrossRefGoogle Scholar
  37. Savelieva, G. N., 1987. Gabbro-Ultrabasic Complexes of the Urals Ophiolites and Their Analogues in Modern Oceanic Crust. Nauka, Moscow. 245 (in Russian)Google Scholar
  38. Savelieva, G. N., Sobolev, A. V., Batanova, V. G., et al., 2008. Structure of Melt Flow Channels in the Mantle. Geotectonics, 42(6): 430–447.  https://doi.org/10.1134/s0016852108060022 CrossRefGoogle Scholar
  39. Savelieva, G. N., Batanova, V. G., Berezhnaya, N. A., et al., 2013. Polychronous Formation of Mantle Complexes in Ophiolites. Geotectonics, 47(3): 167–179.  https://doi.org/10.1134/s0016852113030060 CrossRefGoogle Scholar
  40. Savelieva, G. N., Batanova, V. G., Sobolev, A. V., 2016. Pyroxene-Cr-Spinel Exsolution in Mantle Lherzolites of the Syum-Keu Ophiolite Massif (Arctic Urals). Russian Geology and Geophysics, 57(10): 1419–1436.  https://doi.org/10.1016/j.rgg.2015.12.001 CrossRefGoogle Scholar
  41. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345.  https://doi.org/10.1144/gsl.sp.1989.042.01.19 CrossRefGoogle Scholar
  42. Seyler, M., Lorand, J. P., Dick, H. J. B., et al., 2006. Pervasive Melt Percolation Reactions in Ultra-Depleted Refractory Harzburgites at the Mid-Atlantic Ridge, 15°20•N: ODP Hole 1274A. Contributions to Mineralogy and Petrology, 153(3): 303–319.  https://doi.org/10.1007/s00410-006-0148-6 CrossRefGoogle Scholar
  43. Sharma, M., Wasserburg, G. J., Papanastassiou, D. A., et al, 1995. High 143Nd/144Nd in Extremely Depleted Mantle Rocks. Earth and Planetary Science Letters, 135(1/2/3/4): 101–114.  https://doi.org/10.1016/0012-821x(95)00150-b CrossRefGoogle Scholar
  44. Shmelev, V. R., 1991. Uftramafic Rocks of the Syum-Keu Massif (Polar Ural). Structure, Petrology, Dynamometamorphism. Preprint. UrO AN USSR, Sverdlovsk. 79 (in Russian)Google Scholar
  45. Shmelev, V. R., 2011. Mantle Ultrabasites of Ophiolite Complexes in the Polar Urals: Petrogenesis and Geodynamic Environments. Petrology, 19(6): 618–640.  https://doi.org/10.1134/s0869591111060038 CrossRefGoogle Scholar
  46. Shmelev, V. R., Meng, F. C., 2013. The Nature and Age of Basic Rocks of the Rai-Iz Ophiolite Massif (Polar Urals). Doklady Earth Sciences, 451(1): 758–761.  https://doi.org/10.1134/sl028334x13070167 CrossRefGoogle Scholar
  47. Shmelev, V. R., Arai, S., Tamura, A., 2018. The Nature of Mantle Rocks in Ophiolites of the Polar Urals. Doklady Earth Sciences, 479(2): 472–476.  https://doi.org/10.1134/sl028334xl8040098 CrossRefGoogle Scholar
  48. Spadea, P., Zanetti, A., Vannucci, R., 2003. Mineral Chemistry of Uftramafic Massifs in the Southern Uralides Orogenic Belt (Russia) and the Petrogenesis of the Lower Palaeozoic Ophiolites of the Uralian Ocean. Geological Society, London, Special Publications, 218(1): 567–596.  https://doi.org/10.1144/gsl.sp.2003.218.01.29 CrossRefGoogle Scholar
  49. Tamura, A., Arai, S., Ishimaru, S., et al, 2008. Petrology and Geochemistry of Peridotites from IODP Site U1309 at Atlantis Massif, MAR 30°N: Micro- and Macro-Scale Melt Penetrations into Peridotites. Contributions to Mineralogy andPetrology, 155(4): 491–509.  https://doi.org/10.1007/s00410-007-0254-0 CrossRefGoogle Scholar
  50. Tiepolo, M., Oberti, R., Zanetti, A., et al., 2007. Trace-Element Partitioning between Amphibole and Silicate Melt. Reviews in Mineralogy and Geochemistry, 67(1): 417–452.  https://doi.org/10.2138/rmg.2007.67.11 CrossRefGoogle Scholar
  51. Ulrich, M., Picard, C., Guillot, S., et al., 2010. Multiple Melting Stages and Refertilization as Indicators for Ridge to Subduction Formation: The New Caledonia Ophiolite. Lithos, 115(1/2/3/4): 223–236.  https://doi.org/10.1016/j.lithos.2009.12.011 CrossRefGoogle Scholar
  52. Warren, J. M., Shimizu, N., 2010. Cryptic Variations in Abyssal Peridotite Compositions: Evidence for Shallow-Level Melt Infiltration in the Oceanic Lithosphere. Journal of Petrology, 51(1/2): 395–423.  https://doi.org/10.1093/petrology/egp096 CrossRefGoogle Scholar
  53. Warren, J. M., 2016. Global Variations in Abyssal Peridotite Compositions. Lithos, 248–251: 193–219.  https://doi.org/10.1016/j.lithos.2015.12.023 Google Scholar
  54. Yang, J. S., Meng, F. C., Xu, X. Z., et al, 2015. Diamonds, Native Elements and Metal Alloys from Chromitites of the Ray-Iz Ophiolite of the Polar Urals. Gondwana Research, 27(2): 459–485.  https://doi.org/10.1016/j.gr.2014.07.004 CrossRefGoogle Scholar
  55. Yazeva, R. G., Bochkarev, V. V., 1984. Voykar Volcano-Plutonic Belt (Polar Urals). Sverdlovsk USC USSR Academy of Sciences, Sverdlovsk 158 (in Russian)Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Geology and Geochemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Earth Science DepartmentKanazawa UniversityKanazawaJapan

Personalised recommendations