Advertisement

Journal of Earth Science

, Volume 30, Issue 3, pp 535–548 | Cite as

Timing of Displacement along the Yardoi Detachment Fault, Southern Tibet: Insights from Zircon U-Pb and Mica 40Ar−39Ar Geochronology

  • Hanwen Dong
  • Yuanku Meng
  • Zhiqin Xu
  • Hui CaoEmail author
  • Zhiyu Yi
  • Zeliang Ma
Special Issue on Ophiolite, Orogenic Magmatism and Metamorphism Dedicated to IGCP 649: Diamonds and Recycled Mantle

Abstract

The Yardoi dome is located in the eastern end of the northwest-southeast extending North Himalayan domes (NHD). The dome exposes a granite pluton in the core and three lithologictectonic units separated by the upper detachment fault and the lower detachment fault. The Yardoi detachment fault (YDF), corresponding to the lower detachment fault, is a 800 m strongly deformed top-NW shear zone. LA-ICP-MS zircon U-Pb dating yielded a crystallization ages of 19.57±0.23 to 15.5±0.11 Ma for the leucogranite dyke swarm, which indicates that the ductile motion along the YDF began at ca. 20 Ma. The 40Ar/39Ar muscovite ages of 14.05±0.2 to 13.2±0.2 Ma and the 40Ar/39Ar biotite age of 13.15±0.2 Ma, suggest that the exhumation led to cooling through the 370 °C Ar closure temperature in muscovite at ≈14 Ma to the 335 °C Ar closure temperature in biotite at ≈13 Ma. Our new geochronological data from the Yardoi dome and other domes in the Tethyan Himalayan Sequences suggest that the ductile deformation in the region began at or before ≈36 Ma in a deep tectonic level, resulting in southward ductile flow at the mid-crustal tectonic level that continued from 20 to 13 Ma. Comparing the Yardoi dome to other domes in the NHD, the cooling ages show a clear diachronism and they are progressively younger from the West Himalayan to the East Himalayan.

Keywords

leucogranite geochronology Yardoi dome southern Tibet Himalayan Orogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by the Chinese Academy of Geological Sciences (CAGS) Research Fund (Nos. J1623, YYWF201708), the National Natural Science Foundation of China (Nos. 41502196, 41472198, 41872224, 41430212), the State Scholarship Fund (No. 201809110029), and the China Geological Survey (No. DD20160022). It’s an honor to be invited by Prof. Jingsui Yang to contribute our research into this special issue. Comments on an earlier version of this study from Dr. Kyle Larson improved the clarity of the manuscript. Constructive reviews by two anonymous reviewers and the editors are appreciated. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1223-z.

Supplementary material

12583_2019_1223_MOESM1_ESM.doc (34 kb)
Appendix: Descroptions of U-Pb and Ar-Ar Analytical Methods

References Cited

  1. Aikman, A. B., Harrison, T. M., Ding, L., 2008. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, Southeastern Tibet. Earth and Planetary Science Letters, 274(1/2): 14–23.  https://doi.org/10.1016/j.epsl.2008.06.038 CrossRefGoogle Scholar
  2. Aoya, M., Wallis, S. R., Terada, K., et al., 2005. North-South Extension in the Tibetan Crust Triggered by Granite Emplacement. Geology, 33(11): 853–856.  https://doi.org/10.1130/g21806.1 CrossRefGoogle Scholar
  3. Aoya, M., Wallis, S. R., Kawakami, T., et al., 2006. The Malashan Gneiss Dome in South Tibet: Comparative Study with the Kangmar Dome with Special Reference to Kinematics of Deformation and Origin of Associated Granites. Geological Society London Special Publications, 268(1): 471–495.  https://doi.org/10.1144/gsl.sp.2006.268.01.22 CrossRefGoogle Scholar
  4. Beck, R. A., Burbank, D. W., Sercombe, W. J., et al., 1995. Stratigraphic Evidence for an Early Collision between Northwest India and Asia. Nature, 373(6509): 55–58.  https://doi.org/10.1038/373055a0 CrossRefGoogle Scholar
  5. Bureau of Geology and Mineral Resources of Xizang Autonomous Region (BGMRXAR), 1993. Regional Geology of Xizang (Tibet) Autonomous Region. Geological Publishing House, Beijing (in Chinese)Google Scholar
  6. Burchfiel, B. C., Chen, Z. L., Hodges, K. V., et al., 1992. The South Tibetan Detachment System, Himalayan Orogen: Extension Contemporaneous with and Parallel to Shortening in a Collisional Mountain Belt. Geological Society America Special Paper, 269: 1–41.  https://doi.org/10.1130/spe269-p1 CrossRefGoogle Scholar
  7. Burchfiel, B. C., Royden, L. H., 1985. North-South Extension within the Convergent Himalayan Region. Geology, 13(10): 679–682.  https://doi.org/10.1130/0091-7613(1985)13<679:newtch>2.0.co;2 CrossRefGoogle Scholar
  8. Burg, J. P., Chen, G. M., 1984. Tectonics and Structural Zonation of Southern Tibet, China. Nature, 311(5983): 219–223.  https://doi.org/10.1038/311219a0 CrossRefGoogle Scholar
  9. Chen, Z. L., Liu, Y. P., Hodges, K. V., et al., 1990. The Kangmar Dome: A Metamorphic Core Complex in Southern Xizang (Tibet). Science, 250(4987): 1552–1556.  https://doi.org/10.1126/science.250.4987.1552 CrossRefGoogle Scholar
  10. Diedesch, T. F., Jessup, M. J., Cottle, J. M., et al., 2016. Tectonic Evolution of the Middle Crust in Southern Tibet from Structural and Kinematic Studies in the Lhagoi Kangri Gneiss Dome. Lithosphere, 8(5): 480–504.  https://doi.org/10.1130/l506.1 CrossRefGoogle Scholar
  11. Ding, H. X., Zhang, Z. M., Dong, X., et al., 2016. Early Eocene (c. 50 Ma) Collision of the Indian and Asian Continents: Constraints from the North Himalayan Metamorphic Rocks, Southeastern Tibet. Earth and Planetary Science Letters, 435: 64–73.  https://doi.org/10.1016/j.epsl.2015.12.006 CrossRefGoogle Scholar
  12. Ding, L., Kapp, P., Wan, X. Q., 2005. Paleocene-Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet. Tectonics, 24(3): 1029.  https://doi.org/10.1029/2004tc001729 Google Scholar
  13. Dodson, M. H., 1973. Closure Temperature in Cooling Geochronological and Petrological Systems. Contributions to Mineralogy and Petrology, 40(3): 259–274.  https://doi.org/10.1007/bf00373790 CrossRefGoogle Scholar
  14. Gansser, A., 1964. The Geology of the Himalayas. Wiley Interscience, New York. 289Google Scholar
  15. Gao, L. E., Zeng, L. S., Hou, K. J., et al., 2013. Episodic Crustal Anatexis and the Formation of Paiku Composite Leucogranitic Pluton in the Malashan Gneiss Dome, Southern Tibet. Chinese Science Bulletin, 58(28/29): 3546–3563.  https://doi.org/10.1007/s11434-013-5792-4 CrossRefGoogle Scholar
  16. Gao, L. E., Zeng, L. S., Asimow, P. D., 2017. Contrasting Geochemical Signatures of Fluid-Absent Versus Fluid-Fluxed Melting of Muscovite in Metasedimentary Sources: The Himalayan Leucogranites. Geology, 45(1): 39–42.  https://doi.org/10.1130/g38336.1 CrossRefGoogle Scholar
  17. Geological Survey of Shannxi Province, 1994. 1: 200 000 Geological Map of the Zedong County (China). Geological Publishing House, Beijing (in Chinese) Geological Survey of Yunnan Province, 2004. 1:250 000 Geological Map of the Longzi County (China). Geological Publishing House, Beijing (in Chinese)Google Scholar
  18. Grove, M., Harrison, T. M., 1996. 40Ar* Diffusion in Fe-Rich Biotite. American Mineralogist, 81(7/8): 940–951.  https://doi.org/10.2138/am-1996-7-816 CrossRefGoogle Scholar
  19. Guo, L., Zhang, J. J., Zhang, B., 2008. Structures, Kinematics, Thermochronology and Tectonic Evolution of the Ramba Gneiss Dome in the Northern Himalaya. Progress in Natural Science, 18(7): 851–860.  https://doi.org/10.1016/j.pnsc.2008.01.016 CrossRefGoogle Scholar
  20. Harrison, T. M., 1982. Diffusion of 40Ar in Hornblende. Contributions to Mineralogy and Petrology, 78(3): 324–331.  https://doi.org/10.1007/bf00398927 CrossRefGoogle Scholar
  21. Harrison, T. M., Aleinikoff, J. N., Compston, W., 1987. Observations and Controls on the Occurrence of Inherited Zircon in Concord-Type Granitoids, New Hampshire. Geochimica et Cosmochimica Acta, 51(9): 2549–2558.  https://doi.org/10.1016/0016-7037(87)90305-x CrossRefGoogle Scholar
  22. Harrison, T. M., Copeland, P., Kidd, W. S. F., et al., 1992. Raising Tibet. Science, 255(5052): 1663–1670.  https://doi.org/10.1126/science.255.5052.1663 CrossRefGoogle Scholar
  23. Harrison, T. M., Lovera, O. M., Grove, M., 1997. New Insights into the Origin of Two Contrasting Himalayan Granite Belts. Geology, 25(10): 899–902.  https://doi.org/10.1130/0091-7613(1997)025<0899:niitoo>2.3.co;2 CrossRefGoogle Scholar
  24. Hauck, M. L., Nelson, K. D., Brown, L. D., et al., 1998. Crustal Structure of the Himalayan Orogen at ≈90° East Longitude from Project INDEPTH Deep Reflection Profiles. Tectonics, 17(4): 481–500.  https://doi.org/10.1029/98tc01314 CrossRefGoogle Scholar
  25. Heim, A., Gansser, A., 1939. Central Himalaya. Hindustan Publishing Corporation, Delhi, India. 1–246Google Scholar
  26. Hou, Z. Q., Zheng, Y. C., Zeng, L. S., et al., 2012. Eocene-Oligocene Granitoids in Southern Tibet: Constraints on Crustal Anatexis and Tectonic Evolution of the Himalayan Orogen. Earth and Planetary Science Letters, 349/350: 38–52.  https://doi.org/10.1016/j.epsl.2012.06.030 CrossRefGoogle Scholar
  27. Hu, X. M., Garzanti, E., Wang, J. G., et al., 2016. The Timing of India-Asia Collision Onset-Facts, Theories, Controversies. Earth-Science Reviews, 160: 264–299.  https://doi.org/10.1016/j.earscirev.2016.07.014 CrossRefGoogle Scholar
  28. Jain, A. K., Manickavasagam, R. M., 1993. Inverted Metamorphism in the Intracontinental Ductile Shear Zone during Himalayan Collision Tectonics. Geology, 21(5): 407–410.  https://doi.org/10.1130/0091-7613(1993)021<0407:imitid>2.3.co;2 CrossRefGoogle Scholar
  29. Kawakami, T., Aoya, M., Wallis, S. R., et al., 2007. Contact Metamorphism in the Malashan Dome, North Himalayan Gneiss Domes, Southern Tibet: An Example of Shallow Extensional Tectonics in the Tethys Himalaya. Journal of Metamorphic Geology, 25(8): 831–853.  https://doi.org/10.1111/j.1525-1314.2007.00731.x CrossRefGoogle Scholar
  30. King, J., Harris, N., Argles, T., et al., 2007. First Field Evidence of Southward Ductile Flow of Asian Crust beneath Southern Tibet. Geology, 35(8): 727–730.  https://doi.org/10.1130/g23630a.1 CrossRefGoogle Scholar
  31. King, J., Harris, N., Argles, T., et al., 2011. Contribution of Crustal Anatexis to the Tectonic Evolution of Indian Crust beneath Southern Tibet. Geological Society of America Bulletin, 123(1/2): 218–239.  https://doi.org/10.1130/b30085.1 CrossRefGoogle Scholar
  32. Langille, J., Lee, J., Hacker, B., et al., 2010. Middle Crustal Ductile Deformation Patterns in Southern Tibet: Insights from Vorticity Studies in Mabja Dome. Journal of Structural Geology, 32(1): 70–85.  https://doi.org/10.1016/j.jsg.2009.08.009 CrossRefGoogle Scholar
  33. Langille, J. M., Jessup, M. J., Cottle, J., et al., 2014. Kinematic and Thermal Studies of the Leo Pargil Dome: Implications for Synconvergent Extension in the NW Indian Himalaya. Tectonics, 33(9): 1766–1786.  https://doi.org/10.1002/2014tc003593 CrossRefGoogle Scholar
  34. Lee, J., Whitehouse, M. J., 2007. Onset of Mid-Crustal Extensional Flow in Southern Tibet: Evidence from U/Pb Zircon Ages. Geology, 35(1): 45–48.  https://doi.org/10.1130/g22842a.1 CrossRefGoogle Scholar
  35. Lee, J., Hacker, B. R., Wang, Y., 2004. Evolution of North Himalayan Gneiss Domes: Structural and Metamorphic Studies in Mabja Dome, Southern Tibet. Journal of Structural Geology, 26(12): 2297–2316.  https://doi.org/10.1016/j.jsg.2004.02.013 CrossRefGoogle Scholar
  36. Lee, J., Hacker, B. R., Dinklage, W. S., et al., 2000. Evolution of the Kangmar Dome, Southern Tibet: Structural, Petrologic, and Thermochronologic Constraints. Tectonics, 19(5): 872–895.  https://doi.org/10.1029/1999tc001147 CrossRefGoogle Scholar
  37. Lee, J., McClelland, W., Wang, Y., et al., 2006. Oligocene-Miocene Middle Crustal Flow in Southern Tibet: Geochronology of Mabja Dome. Geological Society London Special Publications, 268(1): 445–469.  https://doi.org/10.1144/gsl.sp.2006.268.01.21 CrossRefGoogle Scholar
  38. Li, G. W., Tian, Y. T., Kohn, B. P., et al., 2015. Cenozoic Low Temperature Cooling History of the Northern Tethyan Himalaya in Zedang, SE Tibet and Its Implications. Tectonophysics, 643: 80–93.  https://doi.org/10.1016/j.tecto.2014.12.014 CrossRefGoogle Scholar
  39. Lister, G. S., Baldwin, S. L., 1996. Modelling the Effect of Arbitrary P-T-t Histories on Argon Diffusion in Minerals Using the MacArgon Program for the Apple Macintosh. Tectonophysics, 253(1/2): 83–109.  https://doi.org/10.1016/0040-1951(95)00059-3 CrossRefGoogle Scholar
  40. Makovsky, Y., Klemperer, S. L., Ratschbacher, L., et al., 1999. Midcrustal Reflector on INDEPTH Wide-Angle Profiles: An Ophiolitic Slab beneath the India-Asia Suture in Southern Tibet?. Tectonics, 18(5): 793–808.  https://doi.org/10.1029/1999tc900022 CrossRefGoogle Scholar
  41. McDougall, I., Harrison, T. M., 1999. Geochronology and Thermochronology by the 40Ar/39Ar Method. Oxford University Press, Oxford. 1–269Google Scholar
  42. Meng, Y. K., Xu, Z. Q., Gao, C. S., et al., 2018a. The Identification of the Eocene Magmatism and Tectonic Significance in the Middle Gangdese Magmatic Belt, Southern Tibet. Acta Petrologica Sinica, 34(3): 513–546 (in Chinese with English Abstract)Google Scholar
  43. Meng, Y. K., Xu, Z. Q., Ma, S. W., et al., 2018b. Late Triassic Granites from the Quxu Batholith Shedding a New Light on the Evolution of the Gangdese Belt in Southern Tibet. Acta Geologica Sinica-English Edition, 92(2): 462–481.  https://doi.org/10.1111/1755-6724.13537 CrossRefGoogle Scholar
  44. Mezger, K., 1990. Geochronology in Granulites. In: Vielzeuf, D., Vidal, P, eds., Granulites and Crustal Evolution. Kluwer Academic Publishers. 451–470CrossRefGoogle Scholar
  45. Pidgeon, R. T., Aftalion, M., 1978. Crustal Evolution in Northwestern Britain and Adjacent Regions. In: Bowes, D. R., Leake, B. E., eds., Cognetic and Inherited Zircon U-Pb Systems in Granites: Paleozoic Granites of Scotland and England. Proceedings of an International Conference, Glasgow University, April 1977. Geological Journal Special Issue 10. 183–220Google Scholar
  46. Quigley, M. C., Yu, L. J., Gregory, C., et al., 2008. U-Pb SHRIMP Zircon Geochronology and T-t-d History of the Kampa Dome, Southern Tibet. Tectonophysics, 446(1/2/3/4): 97–113.  https://doi.org/10.1016/j.tecto.2007.11.004 CrossRefGoogle Scholar
  47. Quigley, M. C., Yu, L. J., Liu, X. H., et al., 2006. 40Ar/39Ar Thermochronology of the Kampa Dome, Southern Tibet: Implications for Tectonic Evolution of the North Himalayan Gneiss Domes. Tectonophysics, 421(3/4): 269–297.  https://doi.org/10.1016/j.tecto.2006.05.002 CrossRefGoogle Scholar
  48. Searle, M. P., Godin, L., 2003. The South Tibetan Detachment and the Manaslu Leucogranite: A Structural Reinterpretation and Restoration of the Annapurna-Manaslu Himalaya, Nepal. The Journal of Geology, 111(5): 505–523.  https://doi.org/10.1086/376763 CrossRefGoogle Scholar
  49. Smit, M. A., Hacker, B. R., Lee, J., 2014. Tibetan Garnet Records Early Eocene Initiation of Thickening in the Himalaya. Geology, 42(7): 591–594.  https://doi.org/10.1130/g35524.1 CrossRefGoogle Scholar
  50. Sun, G. M., Li, X. P., Duan, W. Y., et al., 2018. Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 29(5): 1026–1039.  https://doi.org/10.1007/s12583-018-0854-9 CrossRefGoogle Scholar
  51. Tapponnier, P., Peltzer, G., Armijo, R., 1986. On the Mechanics of the Collision between India and Asia. Geological Society London Special Publications, 19(1): 113–157.  https://doi.org/10.1144/gsl.sp.1986.019.01.07 CrossRefGoogle Scholar
  52. Treloar, P. J., Coward, M. P., 1991. Indian Plate Motion and Shape: Constraints on the Geometry of the Himalayan Orogen. Tectonophysics, 191(3/4): 189–198.  https://doi.org/10.1016/0040-1951(91)90055-w CrossRefGoogle Scholar
  53. Wang, J. M., Wu, F. Y., Rubatto, D., et al., 2018. Early Miocene Rapid Exhumation in Southern Tibet: Insights from P-T-t-D-Magmatism Path of Yardoi Dome. Lithos, 304-307: 38–56.  https://doi.org/10.1016/j.lithos.2018.02.003 Google Scholar
  54. Webb, A. A. G., Guo, H. C., Clift, P. D., et al., 2017. The Himalaya in 3D: Slab Dynamics Controlled Mountain Building and Monsoon Intensification. Lithosphere, 9(4): 637–651.  https://doi.org/10.1130/l636.1 Google Scholar
  55. Xiong, F. H., Yang, J. S., Xu, X. Z., et al., 2018. Compositional and Isotopic Heterogeneities in the Neo-Tethyan Upper Mantle Recorded by Coexisting Al-Rich and Cr-Rich Chromitites in the Purang Peridotite Massif, SW Tibet (China). Journal of Asian Earth Sciences, 159: 109–129.  https://doi.org/10.1016/j.jseaes.2018.03.024 CrossRefGoogle Scholar
  56. Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2011. On the Tectonics of the India-Asia Collision. Acta Geologica Sinica-English Edition, 85(1): 1–33CrossRefGoogle Scholar
  57. Xu, Z. Q., Ji, S. C., Cai, Z. H., et al., 2012. Kinematics and Dynamics of the Namche Barwa Syntaxis, Eastern Himalaya: Constraints from Deformation, Fabrics and Geochronology. Gondwana Research, 21(1): 19–36.  https://doi.org/10.1016/j.gr.2011.06.010 CrossRefGoogle Scholar
  58. Xu, Z. Q., Wang, Q., Pecher, A., et al., 2013. Orogen-Parallel Ductile Extension and Extrusion of the Greater Himalaya in the Late Oligocene and Miocene. Tectonics, 32(2): 191–215.  https://doi.org/10.1002/tect.20021 CrossRefGoogle Scholar
  59. Yan, D. P., Zhou, M. F., Robinson, P. T., et al., 2012. Constraining the Mid-Crustal Channel Flow beneath the Tibetan Plateau: Data from the Nielaxiongbo Gneiss Dome, SE Tibet. International Geology Review, 54(6): 615–632.  https://doi.org/10.1080/00206814.2010.548153 CrossRefGoogle Scholar
  60. Yin, A., 2006. Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by Along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation. Earth-Science Reviews, 76(1/2): 1–131.  https://doi.org/10.1016/j.earscirev.2005.05.004 CrossRefGoogle Scholar
  61. Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211–280.  https://doi.org/10.1146/annurev.earth.28.1.211 CrossRefGoogle Scholar
  62. Yu, F., Li, Z. G., Zhao, Z. D., et al., 2010. Geochemistry and Implication of the Linzizong Volcanic Succession in Cuomai Area, Central-Western Gangdese, Tibet. Acta Petrologica Sinica, 26(7): 2217–2225 (in Chinese with English Abstract)Google Scholar
  63. Zeng, L. S., Liu, J., Gao, L., et al., 2009. Early Oligocene Anatexis in the Yardoi Gneiss Dome, Southern Tibet and Geological Implications. Chinese Science Bulletin, 54(1): 104–112.  https://doi.org/10.1007/s11434-008-0362-x CrossRefGoogle Scholar
  64. Zeng, L. S., Gao, L. E., Xie, K. J., et al., 2011. Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes: Melting Thickened Lower Continental Crust. Earth and Planetary Science Letters, 303(3/4): 251–266.  https://doi.org/10.1016/j.epsl.2011.01.005 CrossRefGoogle Scholar
  65. Zeng, L. S., Gao, L. E., 2017. Cenozoic Crustal Anatexis and the Leucogranites in the Himalayan Collisional Orogenic Belt. Acta Petrologica Sinica, 33(5): 1420–1444 (in Chinese with English Abstract)Google Scholar
  66. Zhang, H. F., Harris, N., Parrish, R., et al., 2004. Causes and Consequences of Protracted Melting of the Mid-Crust Exposed in the North Himalayan Antiform. Earth and Planetary Science Letters, 228(1/2): 195–212.  https://doi.org/10.1016/j.epsl.2004.09.031 CrossRefGoogle Scholar
  67. Zhang, J. J., Guo, L., Zhang, B., 2007. Structure and Kinematics of the Yalashangbo Dome in the Northern Himalayan Dome Belt, China. Scientia Geologica Sinica, 42(1): 16–30 (in Chinese with English Abstract)Google Scholar
  68. Zhang, J. J., Santosh, M., Wang, X. X., et al., 2012. Tectonics of the Northern Himalaya since the India-Asia Collision. Gondwana Research, 21(4): 939–960.  https://doi.org/10.1016/j.gr.2011.11.004 CrossRefGoogle Scholar
  69. Zhang, L., Ye, Y., Qin, S., et al., 2018. Water in the Thickened Lower Crust of the Eastern Himalayan Orogen. Journal of Earth Science, 29(5): 1040–1048.  https://doi.org/10.1007/s12583-018-0880-7 CrossRefGoogle Scholar
  70. Zhang, Z. M., Ding, H. X., Dong, X., et al., 2018. High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen. Journal of Earth Science, 29(5): 1010–1025.  https://doi.org/10.1007/s12583-018-0852-y CrossRefGoogle Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of GeologyChinese Academy of Geological SciencesBeijingChina
  2. 2.College of Earth Science and EngineeringShandong University of Science and TechnologyQingdaoChina
  3. 3.School of Earth Sciences and EngineeringNanjing UniversityNanjingChina

Personalised recommendations