Journal of Earth Science

, Volume 30, Issue 3, pp 549–562 | Cite as

Metamorphic Petrology of Clinopyroxene Amphibolite from the Xigaze Ophiolite, Southern Tibet: P-T Constraints and Phase Equilibrium Modeling

  • Yancheng Zhang
  • Xu-Ping LiEmail author
  • Guangming Sun
  • Zeli Wang
  • Wenyong Duan
Special Issue on Ophiolite, Orogenic Magmatism and Metamorphism Dedicated to IGCP 649: Diamonds and Recycled Mantle


The clinopyroxene amphibolite from the Bailang terrane is located in the central section of the Yarlung Zangbo suture zone (YZSZ), southern Tibet. The study of it is expected to provide important clues for the subduction of the Neo-Tethyan Ocean below the Asian Plate and thus for better understanding of the development of the India-Asia collision zone. Based on integrated textural, mineral compositional, metamorphic reaction history and geothermobarometric studies of the clinopyroxene amphibolite within a serpentinite mélange, four overprinted metamorphic stages are established. They are the first metamorphic record of M1 stage indicated by a relict assemblage of plagioclase+clinopyroxene+amphibole, an early M2 stage characterized by an assemblage of medium-grained clinopyroxene+amphibole+plagioclase+quartz as well as rutile inclusion in titanite, which is formed during burial process, an isobaric cooling M3 stage which is characterized by an assemblage of clinopyroxene+amphibole+plagioclase+titanite, and a decomposing retrograde stage M4, which is represented by the amphibolite+plagioclase symplectite+titanite+ rutile+quartz. By applying the THERMOCALC (versions 6.2 and 6.3) technique in the NCFMASHTO system, the P-T conditions estimated from M1 to M4 stages are ca. 8.6 kbar/880 °C, 10.8-13.4 kbar/800-840 °C, 12.7-13.2 kbar/650-660 °C and <11.2 kbar/640 °C, respectively. The mineral assemblages and their P-T conditions define a counterclockwise P-T path for the clinopyroxene amphibolite of the Xigaze ophiolite, suggesting that the rocks underwent a cooling process during burial from magmatic protolith, and a decompressing stage after the pressure peak metamorphic conditions, which implies that the Bailang terrane of the Xigaze ophiolite may have experienced subduction/collision-related tectonic processes. The peak metamorphism reaches to the transitional P-T conditions among amphibolite facies, granulite facies and eclogite facies with a burial depth of 30–40 km. After exhumation of the ophiolitic unit to the shallow crustal levels, the clinopyroxene amphibolite exposes to a high fO2 condition on the basis of the stable epidotebearing assemblage in the T-MO2 diagrams. A late subgreenschist facies overprinting subsequently occurs, the relevant mineral assemblage is prehnite+albite+chlorite+epidote+quartz.

Key words

clinopyroxene amphibolite thermodynamic modeling P-T conditions counterclock P-T path Bailang terrane Xigaze ophiolite Tibet 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Dr. Lingmin Zhang from Tongji University for the helps in electron microprobe analysis. We acknowledge Dr. Cong Zhang and an anonymous reviewer for their comments and suggestions that greatly improved the manuscript. This study was financially supported by the National Natural Science Foundation of China (No. 41572044) and the SDUST Research Fund (No. 2015TDJH101). The final publication is available at Springer via

References Cited

  1. Aitchison, J. C., Badengzhu., Davis, A. M., et al., 2000. Remnants of a Cretaceous Intra-Oceanic Subduction System within the Yarlung-Zangbo Suture (Southern Tibet). Earth and Planetary Science Letters, 183(1/2): 231–244. CrossRefGoogle Scholar
  2. Aitchison, J. C., Davis, A. M., 2004. Evidence for the Multiphase Nature of the India-Asia Collision from the Yarlung Zangbo Suture Zone, Tibet. In: Malpas, J., Fletcher, C., Ali, J. R., et al., eds., Aspects of the Tectonic Evolution of China. Geological Society, London, Special Publications, 226: 217–234. CrossRefGoogle Scholar
  3. Aitchison, J. C., Davis, A. M., Abrajevitch, A. V., et al., 2003. Stratigraphic and Sedimentological Constraints on the Age and Tectonic Evolution of the Neotethyan Ophiolites along the Yarlung Tsangpo Suture Zone, Tibet. Geological Society, London, Special Publications, 218(1): 147–164. CrossRefGoogle Scholar
  4. Aitchison, J. C., McDermid, I. R. C., Ali, J. R., et al., 2007. Shoshonites in Southern Tibet Record Late Jurassic Rifting of a Tethyan Intraoceanic Island Arc. The Journal of Geology, 115(2): 197–213. CrossRefGoogle Scholar
  5. Allègre, C. J., Courtillot, V., Tapponnier, P., et al., 1984. Structure and Evolution of the Himalaya-Tibet Orogenic Belt. Nature, 307(5946): 17–22. CrossRefGoogle Scholar
  6. Bédard, É., Hébert, R., Guilmette, C., et al., 2009. Petrology and Geochemistry of the Saga and Sangsang Ophiolitic Massifs, Yarlung Zangbo Suture Zone, Southern Tibet: Evidence for an Arc-Back-Arc Origin. Lithos, 113(1/2): 48–67. CrossRefGoogle Scholar
  7. Bézard, R., Hébert, R., Wang, C. S., et al., 2011. Petrology and Geochemistry of the Xiugugabu Ophiolitic Massif, Western Yarlung Zangbo Suture Zone, Tibet. Lithos, 125(1/2): 347–367. CrossRefGoogle Scholar
  8. Bhowmik, S. K., Ao, A., 2016. Subduction Initiation in the Neo-Tethys: Constraints from Counterclockwise P-T Paths in Amphibolite Rocks of the Nagaland Ophiolite Complex, India. Journal of Metamorphic Geology, 34(1): 17–44. CrossRefGoogle Scholar
  9. Coleman, R. G., 1981. Tectonic Setting for Ophiolite Obduction in Oman. Journal of Geophysical Research: Solid Earth, 86(B4): 2497–2508. CrossRefGoogle Scholar
  10. Dai, J. G., Wang, C. S., Polat, A., et al., 2013. Rapid Forearc Spreading between 130 and 120 Ma: Evidence from Geochronology and Geochemistry of the Xigaze Ophiolite, Southern Tibet. Lithos, 172/173: 1–16. CrossRefGoogle Scholar
  11. Diener, J. F. A., Powell, R., White, R. W., et al., 2007. A New Thermodynamic Model for Clino- and Orthoamphiboles in the System Na2O-CaO-FeOMgO-Al2O3-SiO2-H2O-O. Journal of Metamorphic Geology, 25(6): 631–656. CrossRefGoogle Scholar
  12. Dilek, Y., Whitney, D. L., 1997. Counterclockwise P-T-t Trajectory from the Metamorphic Sole of a Neo-Tethyan Ophiolite (Turkey). Tectonophysics, 280(3/4): 295–310. CrossRefGoogle Scholar
  13. Ding, L., Kapp, P., Wan, X. Q., 2005. Paleocene-Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet. Tectonics, 24(3): TC3001. CrossRefGoogle Scholar
  14. Dubois-Côté, V., Hébert, R., Dupuis, C., et al., 2005. Petrological and Geochemical Evidence for the Origin of the Yarlung Zangbo Ophiolites, Southern Tibet. Chemical Geology, 214(3/4): 265–286. CrossRefGoogle Scholar
  15. Dupuis, C., Hébert, R., Dubois-Côté, V., et al., 2005a. Petrology and Geochemistry of Mafic Rocks from Mélange and Flysch Units Adjacent to the Yarlung Zangbo Suture Zone, Southern Tibet. Chemical Geology, 214(3/4): 287–308. CrossRefGoogle Scholar
  16. Dupuis, C., Hébert, R., Dubois-Côté, V., et al., 2005b. The Yarlung Zangbo Suture Zone Ophiolitic Mélange (Southern Tibet): New Insights from Geochemistry of Ultramafic Rocks. Journal of Asian Earth Sciences, 25(6): 937–960. CrossRefGoogle Scholar
  17. Dupuis, C., Hébert, R., Dubois-Côté, V., et al., 2006. Geochemistry of Sedimentary Rocks from Mélange and Flysch Units South of the Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Asian Earth Sciences, 26(5): 489–508. CrossRefGoogle Scholar
  18. Girardeau, J., Mercier, J. C. C., Yougong, Z., 1985. Origin of the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, Southern Tibet. Tectonophysics, 119(1/2/3/4): 407–433. CrossRefGoogle Scholar
  19. Green, E. C. R., White, R. W., Diener, J. F. A., et al., 2016. Activity-Composition Relations for the Calculation of Partial Melting Equilibria in Metabasic Rocks. Journal of Metamorphic Geology, 34(9): 845–869. CrossRefGoogle Scholar
  20. Guilmette, C., Hébert, R., Dostal, J., et al., 2012. Discovery of a Dismembered Metamorphic Sole in the Saga Ophiolitic Mélange, South Tibet: Assessing an Early Cretaceous Disruption of the Neo-Tethyan Supra-Subduction Zone and Consequences on Basin Closing. Gondwana Research, 22(2): 398–414. CrossRefGoogle Scholar
  21. Guilmette, C., Hébert, R., Dupuis, C., et al., 2008. Metamorphic History and Geodynamic Significance of High-Grade Metabasites from the Ophiolitic Mélange beneath the Yarlung Zangbo Ophiolites, Xigaze Area, Tibet. Journal of Asian Earth Sciences, 32(5/6): 423–437. CrossRefGoogle Scholar
  22. Guilmette, C., Hébert, R., Wang, C. S., et al., 2009. Geochemistry and Geochronology of the Metamorphic Sole Underlying the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, South Tibet. Lithos, 112(1/2): 149–162. CrossRefGoogle Scholar
  23. Hébert, R., Bézard, R., Guilmette, C., et al., 2012. The Indus-Yarlung Zangbo Ophiolites from Nanga Parbat to Namche Barwa Syntaxes, Southern Tibet: First Synthesis of Petrology, Geochemistry, and Geochronology with Incidences on Geodynamic Reconstructions of Neo-Tethys. Gondwana Research, 22(2): 377–397. CrossRefGoogle Scholar
  24. Hébert, R., Huot, F., Wang, C. S., et al., 2003. Yarlung Zangbo Ophiolites (Southern Tibet) Revisited: Geodynamic Implications from the Mineral Record. Geological Society, London, Special Publications, 218(1): 165–190. CrossRefGoogle Scholar
  25. Hébert, R., Varfalvy, V., Huot, F., et al., 2000. Yarlung Zangbo Ophiolites, Southern Tibet. Earth Science Frontier, 7: 124–126Google Scholar
  26. Hébert, R., Wang, C. S., Varfalvy, V., et al., 2001. Yarlung Zangbo Suture Ophiolites and Their Supra-Subduction Zone Setting. Journal of Asian Earth Sciences, 19: 27–28Google Scholar
  27. Holland, T. J. B., Powell, R., 2011. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 29(3): 333–383. CrossRefGoogle Scholar
  28. Holland, T. J. B., Powell, R., 2003. Activity-Composition Relations for Phases in Petrological Calculations: An Asymmetric Multicomponent Formulation. Contributions to Mineralogy and Petrology, 145(4): 492–501. CrossRefGoogle Scholar
  29. Huot, F., Hébert, R., Varfalvy, V., et al., 2002. The Beimarang Mélange (Southern Tibet) Brings Additional Constraints in Assessing the Origin, Metamorphic Evolution and Obduction Processes of the Yarlung Zangbo Ophiolite. Journal of Asian Earth Sciences, 21(3): 307–322. CrossRefGoogle Scholar
  30. Johannes, W., Schreyer, W., 1981. Experimental Introduction of CO2 and H2O into Mg-Cordierite. American Journal of Science, 281(3): 299–317. CrossRefGoogle Scholar
  31. Leake, B. E., Woolley, A. R., Birch, W. D., et al., 2004. Nomenclature of Amphiboles: Additions and Revisions to the International Mineralogical Association’s Amphibole Nomenclature. Mineralogical Magazine, 68(1): 209–215. CrossRefGoogle Scholar
  32. Li, X.-P., Chen, H. K., Wang, Z. L., et al., 2015a. Textural Evolution of Spinel Peridotite and Olivine Websterite in the Purang Ophiolite Complex, Western Tibet. Journal of Asian Earth Sciences, 110: 55–71. CrossRefGoogle Scholar
  33. Li, X.-P., Kong, F. M., Chen, H. K., et al., 2015b. Rodingite in the Purang Ophiolite and Its Geological Implication, Southwest Tibet. Acta Geologica Sinica—English Edition, 89(Suppl. 2): 41–42. CrossRefGoogle Scholar
  34. Li, X.-P., Duan, W. Y., Zhao, L. Q., et al., 2017. Rodingites from the Xigaze Ophiolite, Southern Tibet—New Insights into the Processes of Rodingitization. European Journal of Mineralogy, 29(5): 821–837. CrossRefGoogle Scholar
  35. Liu, T., Wu, F. Y., Zhang, L. L., et al., 2016. Zircon U-Pb Geochronological Constraints on Rapid Exhumation of the Mantle Peridotite of the Xigaze Ophiolite, Southern Tibet. Chemical Geology, 443: 67–86. CrossRefGoogle Scholar
  36. Mahoney, J. J., Frei, R., Tejada, M. L. G., et al., 1998. Tracing the Indian Ocean Mantle Domain through Time: Isotopic Results from Old West Indian, East Tethyan, and South Pacific Seafloor. Journal of Petrology, 39(7): 1285–1306. CrossRefGoogle Scholar
  37. Malpas, J., Zhou, M. F., Robinson, P. T., et al., 2003. Geochemical and Geochronological Constraints on the Origin and Emplacement of the Yarlung Zangbo Ophiolites, Southern Tibet. Geological Society, London, Special Publications, 218(1): 191–206. CrossRefGoogle Scholar
  38. Mo, X. X., Hou, Z. Q., Niu, Y. L., et al., 2007. Mantle Contributions to Crustal Thickening during Continental Collision: Evidence from Cenozoic Igneous Rocks in Southern Tibet. Lithos, 96(1/2): 225–242. CrossRefGoogle Scholar
  39. Nicolas, A., 1989. Structures of Ophiolites and Dynamics of Oceanic Lithosphere. Kluwer Academic Publisher, Dororecht, Boston, London. 1–369CrossRefGoogle Scholar
  40. Nicolas, A., Girardeau, J., Marcoux, J., et al., 1981. The Xigaze Ophiolite (Tibet): A Peculiar Oceanic Lithosphere. Nature, 294(5840): 414–417. CrossRefGoogle Scholar
  41. Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3–14. CrossRefGoogle Scholar
  42. Robertson, A. H. F., 2002. Overview of the Genesis and Emplacement of Mesozoic Ophiolites in the Eastern Mediterranean Tethyan Region. Lithos, 65(1/2): 1–67. CrossRefGoogle Scholar
  43. Sun, G. M., Li, X.-P., Duan, W. Y., et al., 2018. Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 29(5): 1026–1039. CrossRefGoogle Scholar
  44. Wakabayashi, J., Dilek, Y., 2003. What Constitutes ‘Emplacement’ of an Ophiolite? Mechanisms and Relationship to Subduction Initiation and Formation of Metamorphic Soles. Geological Society, London, Special Publications, 218(1): 427–447. CrossRefGoogle Scholar
  45. Wang, R., Xia, B., Zhou, G. Q., et al., 2006. SHRIMP Zircon U-Pb Dating for Gabbro from the Tiding Ophiolite in Tibet. Chinese Science Bulletin, 51(14): 1776–1779. CrossRefGoogle Scholar
  46. Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185–187. CrossRefGoogle Scholar
  47. Wu, F. Y., Ji, W. Q., Wang, J. G., et al., 2014. Zircon U-Pb and Hf Isotopic Constraints on the Onset Time of India-Asia Collision. American Journal of Science, 314(2): 548–579. CrossRefGoogle Scholar
  48. Xia, B., Yu, H. X., Chen, G. W., et al., 2003. Geochemistry and Tectonic Environment of the Dagzhuka Ophiolite in the Yarlung-Zangbo Suture Zone, Tibet. Geochemical Journal, 37(3): 311–324. CrossRefGoogle Scholar
  49. Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211–280. CrossRefGoogle Scholar
  50. Zhang, X., Li, X.-P., Wang, Z. L., et al., 2016. Mineralogical and Petrogeochemical Characteristics of the Garnet Amphibolites in the Xigaze Ophiolite, Tibet. Acta Petrologica Sinica, 32(12): 3685–3702 (in Chinese with English Abstract)Google Scholar
  51. Zhou, M. F., Robinson, P. T., Malpas, J., et al., 1996. Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet): Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle. Journal of Petrology, 37(1): 3–21. CrossRefGoogle Scholar
  52. Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429–1454. CrossRefGoogle Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, College of Earth Science & EngineeringShandong University of Science and TechnologyQingdaoChina

Personalised recommendations