Advertisement

Journal of Earth Science

, Volume 30, Issue 3, pp 460–475 | Cite as

Is the Songshugou Complex, Qinling Belt, China, an Eclogite Facies Neoproterozoic Ophiolite?

  • Thomas BaderEmail author
  • Lifei Zhang
  • Xiaowei Li
Special Issue on Ophiolite, Orogenic Magmatism and Metamorphism Dedicated to IGCP 649: Diamonds and Recycled Mantle
  • 10 Downloads

Abstract

Ophiolites play a key role in understanding subduction-accretion-collision processes. Herein, we discuss origin and metamorphic evolution of an enigmatic, Neoproterozoic ophiolite candidate—the mafic-ultramafic Songshugou Complex, Qinling belt, China—summarizing published thermobarometry, U/Pb geochronology, and geochemistry and presenting new phase equilibrium modeling. Garnet, rarely preserved in amphibolites of the Songshugou Complex, has prograde zoning and low-pyrope cores [Alm54−71 (Grs+And)25−30Prp1−6Sps5−12]. It formed at quartz eclogite facies conditions of 1.93–2.54 GPa, 462–542 °C. During exhumation, garnet first was mantled by plagioclase-rich coronas at about 0.7–1.2 GPa, 660–710 °C. During an isothermal uplift to 0.5–0.8 GPa, these coronas evolved widely into σ-shaped aggregates and eventually into whitish ribbons oriented with a steeply southwest dipping mineral stretching lineation. The exhumation into middle-upper crustal levels proceeded till the Late Devonian. The oceanic protoliths of the eclogites were emplaced into continental crust in the Neoproterozoic and dragged into a subduction zone in North Qinling in the Cambrian. The ultramafic rocks of the Songshugou Complex were not subducted with the mafic rocks in a coherent block given the absence of garnet but ubiquitous occurrence of spinel implies a P maximum of ≈1.7 GPa. Rather, mafic and ultramafic rocks belonged to downgoing and overriding plate, respectively. They were juxtaposed at 0.8–1.7 GPa at Early Ordovician time.

Keywords

Qinling belt Songshugou Complex garnet isopleth thermobarometry eclogite Early Paleozoic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 41350110224, 41750110483, 41730426, 41872066), and the Open Research Project of the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (No. GPMR201820). We are grateful to Prof. Xiaochun Liu for his excellent field guidance. We thank Oona Appelt, Guiming Shu, and Xiaoli Li for operating the microprobe. Numerous diagrams were plotted with GMT (Wessel et al., 2013; http://www.soest.hawaii.edu/gmt/). Pointed criticism by two anonymous reviewers and the editors helped to improve the conclusiveness and the clarity of the manuscript. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1221-1.

Supplementary material

12583_2019_1221_MOESM1_ESM.pdf (1.6 mb)
Is the Songshugou Complex, Qinling Belt, China, an Eclogite Facies Neoproterozoic Ophiolite?

References Cited

  1. Axler, J. A., Ague, J. J., 2015. Oriented Multiphase Needles in Garnet from mtrahigh-Temperature Granulites, Connecticut, U.S.A.. American Mineralogist, 100(10): 2254–2271.  https://doi.org/10.2138/am-2015-5018 Google Scholar
  2. Bader, T., Ratschbacher, L., Franz, L., et al., 2013a. The Heart of China Revisited, I. Proterozoic Tectonics of me Qin Mountains in me Core of Supercontinent Rodinia. Tectonics, 32(3): 661–687.  https://doi.org/10.1002/tect.20024 Google Scholar
  3. Bader, T., Franz, L., Ratschbacher, L., et al., 2013b. The Heart of China Revisited, II. Early Paleozoic (Ultra)High-Pressure and (Ultra)High-Temperature Metamorphic Qinling Orogen. Tectonics, 32(4): 922–947.  https://doi.org/10.1002/tect.20056 Google Scholar
  4. Bader, T., Franz, L., De Capitani, C., et al., 2014. The Effect of Water Activity on Calculated Phase Equilibria and Garnet Isopleth Thermobarome-try of Granulites, with Particular Reference to Tongbai (East-Central China). European Journal of Mineralogy, 26(1): 5–23.  https://doi.org/10.1127/0935-1221/2013/0025-2351 Google Scholar
  5. Bader, T., Zhang, L. F., Li, X., et al., 2019a. High-Pressure Granulites of the Songshugou Area (Qinling Orogen, East-Central China): Petrography, Phase Relations, and U/Pb Zircon Geo chronology. Journal of Metamorphic Geology, Under ReviewGoogle Scholar
  6. Bader, T., Zhang, L. F., Li, X., 2019b. Transforming Eclogite into Mylonitic Amphibolite (Songshugou, Qinling Belt, China). EGU General Assembly, Vienna. Abstract EGU2019-18004Google Scholar
  7. Bhadra, S., Bhattacharya, A., 2007. The Barometer Tremolite+Tschermakite=2Albite=2Pargasite+8Quartz: Constraints from Experimental Data at Unit Silica Activity, with Application to Garnet-Free Natural Assemblages. American Mineralogist, 92(4): 491–502. https://doi.org/10.2138/am.2007.2067Google Scholar
  8. Caddick, M. J., Konopasek, J., Thompson, A. B., 2010. Preservation of Garnet Growth Zoning and the Duration of Prograde Metamorphism. Journal of Petrology, 51(11): 2327–2347.  https://doi.org/10.1093/petrology/egq059 Google Scholar
  9. Cao, Y., Song, S. G., Su, L., et al., 2016. Highly Refractory Peridotites in Songshugou, Qinling Orogen: Insights into Partial Melting and Melt/Fluid-Rock Reactions in Forearc Mantle. Lithos, 252/253: 234–254.  https://doi.org/10.1016/j.lithos.2016.03.002 Google Scholar
  10. Cao, Y., Jung, H., Song, S. G., 2017. Olivine Fabrics and Tectonic Evolution of Fore-Arc Mantles: A Natural Perspective from the Songshugou Dunite and Harzburgite in the Qinling Orogenic Belt, Central China. Geochemistry, Geophysics, Geosystems, 18(3): 907–934.  https://doi.org/10.1002/2016gc006614 Google Scholar
  11. Chakraborty, S., Ganguly, J., 1992. Cation Diffusion in Aluminosilicate Garnets: Experimental Determination in Spessartine-Almandine Diffusion Couples, Evaluation of Effective Binary Diffusion Coefficients, and Applications. Contributions to Mineralogy and Petrology, 111(1): 74–86.  https://doi.org/10.1007/bf000296579 Google Scholar
  12. Chen, D. L., Liu, L., Zhou, D. W., et al., 2002. Genesis and Ar/Ar Dating of Clinopyroxene Megacrysts in Ultramafic Terrane from Songshugou, East Qinling Mountain and Its Geological Implication. Acta Petrologica Sinica, 18(3): 355–362 (in Chinese with English Abstract)Google Scholar
  13. Chen, D. L., Ren, Y. F., Gong, X. G., et al., 2015. Identification and Its Geological Significance of Eclogite in Songshugou, the North Qinling. Acta Petrologica Sinica, 31(7): 1841–1854 (in Chinese with English Abstract)Google Scholar
  14. Cheng, H., Zhang, C., Vervoort, J. D., et al., 2011. Geochronology of the Transition of Eclogite to Amphibolite Facies Metamorphism in the North Qinling Orogen of Central China. Lithos, 125(3/4): 969–983.  https://doi.org/10.1016/j.lithos.2011.05.010 Google Scholar
  15. Cheng, H., Zhang, C., Vervoort, J. D., et al., 2012. Timing of Eclogite Facies Metamorphism in the North Qinling by U-Pb and Lu-Hf Geochronology. Lithos, 136-139: 46–59.  https://doi.org/10.1016/j.lithos.2011.06.003 Google Scholar
  16. Colombi, A., 1988. Métamorphisme et Géochimie des Roches Mafiques des Alpes Ouest-Centrales (Géopofil Viège Domodossola-Locarno): [Dissertation]. University Lausanne, Lausanne. 216Google Scholar
  17. de Capitani, C., 1994. Gleichgewichts-Phasendiagramme: Theorie und Software. Berichte der Deutschen Mineralogischen Gesellschaft, European Journal of Mineralogy, 48(Beiheft): 6 (in German)Google Scholar
  18. de Capitani, C., Brown, T. H., 1987. The Computation of Chemical Equilibrium in Complex Systems Containing Non-Ideal Solutions. Geo-chimica et Cosmochimica Acta, 51(10): 2639–2652.  https://doi.org/10.1016/0016-7037(87)90145-1 Google Scholar
  19. de Capitani, C., Petrakakis, K., 2010. The Computation of Equilibrium Assemblage Diagrams with Theriak/Domino Software. American Mineralogist, 95(7): 1006–1016.  https://doi.org/10.2138/am.2010.3354 Google Scholar
  20. Diener, J. F. A., Powell, R., White, R. W., et al., 2007. A New Thermodynamic Model for Clino- and Orthoamphiboles in the System Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O. Journal of Metamorphic Geology, 25(6): 631–656.  https://doi.org/10.1111/j.1525-1314.2007.00720.x Google Scholar
  21. Dilek, Y., Furnes, H., 2011. Ophiolite Genesis and Global Tectonics: Geo-chemical and Tectonic Fingerprinting of Ancient Oceanic Lithosphere. Geological Society of America Bulletin, 123(3/4): 387–411.  https://doi.org/10.1130/b30446.1 Google Scholar
  22. Dilek, Y., Furnes, H., 2014. Ophiolites and Their Origins. Elements, 10(2): 93–100.  https://doi.org/10.2113/gselements.10.2.93 Google Scholar
  23. Dong, Y. P., Santosh, M., 2016. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1–40.  https://doi.org/10.1016/j.gr.2015.06.009 Google Scholar
  24. Dong, Y. P., Zhou, M. R., Zhang, G. W., et al., 2008. The Grenvillian Songshugou Ophiolite in the Qinling Mountains, Central China: Implications for the Tectonic Evolution of the Qinling Oogenic Belt. Journal of Asian Earth Sciences, 32(5/6): 325–335.  https://doi.org/10.1016/j.jseaes.2007.11.010 Google Scholar
  25. Dong, Y. P., Zhang, G. W., Neubauer, R., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213–237.  https://doi.org/10.1016/jjseaes.2011.03.002 Google Scholar
  26. Dong, Y. P., Zhang, G. W., Hauzenberger, C., et al., 2011b. Palaeozoic Tectonics and Evolutionary History of the Qinling Orogen: Evidence from Geochemistry and Geochronology of Ophiolite and Related Volcanic Rocks. Lithos, 122(1/2): 39–56.  https://doi.org/10.1016/j.lithos.2010.11.011 Google Scholar
  27. Dong, Y. P., Yang, Z., Liu, X. M., et al., 2014. Neoproterozoic Amalgamation of the Northern Qinling Terrain to the North China Craton: Constraints from Geochronology and Geochemistry of the Kuanping Ophiolite. Precambrian Research, 255. 77–95.  https://doi.org/10.1016/j.precamres.2014.09.008 Google Scholar
  28. Downs, R. T., 2006. The RRUFF Project: An Integrated Study of the Chemistry, Crystallography, Raman and Infrared Spectroscopy of Minerals. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association, Kobe, Japan. 003-13Google Scholar
  29. Du, J. X., Zhang, L. P., Bader, T., et al., 2014. Metamorphic Evolution of Relict Lawsonite-Bearing Eclogites from the (U)HP Metamorphic Belt in the Chinese Southwestern Tianshan. Journal of Metamorphic Geology, 32(6): 575–598.  https://doi.org/10.1111/jmg.12080 Google Scholar
  30. Ernst, W. G., Liu, J., 1998. Experimental Phase-Equilibrium Study of Aland Ti-Contents of Calcic Amphibole in MORB—A Semiquantitative Thermobarometer. American Mineralogist, 83(9/10): 952–969.  https://doi.org/10.2138/am-1998-9-1004 Google Scholar
  31. Purnes, H., de Wit, M., Dilek, Y., 2014. Pour Billion Years of Ophiolites Reveal Secular Trends in Oceanic Crust Pormation. Geoscience Frontiers, 5(4): 571–603.  https://doi.org/10.1016/j.gsf.2014.02.002 Google Scholar
  32. Giaramita, M., MacPherson, G. J., Phipps, S. P., 1998. Petrologically Diverse Basalts from a Possil Oceanic Porearc in California: The Llanada and Black Mountain Remnants of the Coast Range Ophiolite. Geological Society of America Bulletin, 110(5): 553–571.  https://doi.org/10.1130/0016-7606(1998)1100553:pdbfaf2.3.co;2 Google Scholar
  33. Goodenough, K. M., Thomas, R. J., Styles, M. T., et al., 2014. Records of Ocean Growth and Destruction in the Oman-UAE Ophiolite. Elements, 10(2): 109–114.  https://doi.org/10.2113/gselements.10.2.109 Google Scholar
  34. Granot, R., 2016. Palaeozoic Oceanic Crust Preserved beneath the Eastern Mediterranean. Nature Geoscience, 9(9): 701–705.  https://doi.org/10.1038/ngeo2784 Google Scholar
  35. Green, E., Holland, T., Powell, R., 2007. An Order-Disorder Model for Omphacitic Pyroxenes in the System Jadeite-Diopside-Hedenbergite-Acmite, with Applications to Eclogitic Rocks. American Mineralogist, 92(7): 1181–1189.  https://doi.org/10.2138/am.2007.2401 Google Scholar
  36. Hacker, B. R., Gerya, T. V., 2013. Paradigms, New and Old, for Ultrahigh-Pressure Tectonism. Tectonophysics, 603. 79–88.  https://doi.org/10.1016/j.tecto.2013.05.026 Google Scholar
  37. Han, Y. G., Zhao, G. C., Cawood, P. A., et al., 2016. Tarim and North China Cratons Linked to Northern Gondwana through Switching Accretion-ary Tectonics and Collisional Orogenesis. Geology, 44(2): 95–98.  https://doi.org/10.1130/g37399.1 Google Scholar
  38. Holland, T. J. B., Powell, R., 1998. An Internally Consistent Thermodynamic Data Set for Phases of Penological Interest Journal of Metamorphic Geology, 16(3): 309–343.  https://doi.org/10.1111/j.1525-1314.1998.00140.x Google Scholar
  39. Holland, T. J. B., Powell, R., 2003. Activity?composition Relations for Phases in Petrological Calculations: An Asymmetric Multicomponent Pormulation. Contributions to Mineralogy and Petrology, 145(4): 492–501.  https://doi.org/10.1007/s00410-003-0464-z Google Scholar
  40. Kelsey, D. E., White, R. W., Holland, T. J. B., et al., 2004. Calculated Phase Equilibria in K2O-PeO-MgO-Al2O3-SiO2-H2O for Sapphirine-Quartz-Bearing Mineral Assemblages. Journal of Metamorphic Geology, 22(6): 559–578.  https://doi.org/10.1111/j.1525-1314.2004.00533.x Google Scholar
  41. Klemme, S., 2004. The Influence of Cr on the Garnet-Spinel Transition in the Earth’s Mantle: Experiments in the System MgO-Cr2O3-SiO2 and Thermodynamic Modelling. Lithos, 77(1/2/3/4): 639–646.  https://doi.org/10.1016/j.lithos.2004.03.017 Google Scholar
  42. Kretz, R., 1983. Symbols for Rock-Porming Minerals. American Mineralogist, 68(1): 277–279Google Scholar
  43. Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9(3): 623–651.  https://doi.org/10.1127/ejm/9/3/0623 Google Scholar
  44. Lee, B., Zhu, L. M., Gong, H. J., et al., 2010. Genetic Relationship between Peridotites and Chromite Deposits from Songshugou Area of North Qinling. Acta Petrologica Sinica, 26(5): 1487–1502 (in Chinese with English Abstract)Google Scholar
  45. Li, Y., Zhou, H., Zhong, Z., et al., 2012. Two Eopaleozoic Events in North Qinling: Petrology and Zircon U-Pb Geochronology Evidences from Basic Rocks in the Songshugou Area. Earth Science—Journal of China University of Geosciences), 37(Suppl.): 111–124 (in Chinese with English AbstracGoogle Scholar
  46. Li, Y., Zhou, H. W., Li, Q. L., et al., 2014. Palaeozoic Polymetamorphism in the North Qinling Orogenic Belt, Central China: Insights from Petrology and in situ Titanite and Zircon U-Pb Geochronology. Journal of Asian Earth Sciences, 92. 77–91.  https://doi.org/10.1016/j.jseaes.2014.05.023 Google Scholar
  47. Li, Y., Yang, J. S., Dilek, Y., et al., 2015. Crustal Architecture of the Shangdan Suture Zone in the Early Paleozoic Qinling Orogenic Belt, China: Record of Subduction Initiation and Backarc Basin Development. Gondwana Research, 27(2): 733–744.  https://doi.org/10.1016/j.gr.2014.03.006 Google Scholar
  48. Liu, J., Sun, Y., 2005. New Data on the “Hot” Emplacement Age of Ul-tramafic Rocks from the Songshugou Area in the Eastern Qinling. Geological Review, 51(2): 198–192 (in Chinese with English Abstract)Google Scholar
  49. Liu, L., Zhou, D. W., 1995. Discovery and Study of High-Pressure Basic Granulites in Songshugou Area of Shangnan, East Qinling. Chinese Science Bulletin, 40(5): 400–404 (in Chinese)Google Scholar
  50. Liu, L., Zhou, D. W., Dong, Y. P., et al., 1995. High Pressure Metabasites and their Retrograde Metamorphic P-T-t Path from Songshugou Area, Eastern Qinling Mountain. Acta Petrologica Sinica, 11(2): 127–136 (in Chinese with English Abstract)Google Scholar
  51. Liu, L., Zhou, D. W., Wang, Y., et al., 1996. Study and Implication of the High-Pressure Pelsic Granulite in the Qinling Complex of East Qinling. Science in China Series D: Earth Sciences, 39(Suppl.): 60–68 (in Chinese)Google Scholar
  52. Liu, L., Chen, D. L., Sun, Y., et al., 2003. Discovery of Relic Majoritic Garnet in Pelsic Metamorphic Rocks of Qinling Omplex, North Qinling Orogenic Belt, China. Alice Wain Memorial Western Norway Eclogite Pield Symposium, Selje. 82Google Scholar
  53. Liu, L., Chen, D. L., Zhang, A. D., et al., 2010. Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Dating of Amphibolites in the Songshugou Ophiolite in the Eastern Qinling. Acta Geologica Sinica—English Edition, 78(1): 137–145.  https://doi.org/10.1111/j.1755-6724.2004.tb00685.x Google Scholar
  54. Liu, L., Liao, X. Y., Zhang, C. L., et al., 2013. Multi-Metamorphic Timings of HP-UHP Rocks in the North Qinling and Their Geological Implications. Acta Petrologica Sinica, 29(5): 1634–1656 (in Chinese with English Abstract)Google Scholar
  55. Liu, L., Liao, X. Y., Wang, Y. W., et al., 2016. Early Paleozoic Tectonic Evolution of the North Qinling Oogenic Belt in Central China: Insights on Continental Deep Subduction and Multiphase Exhumation. Earth-Science Reviews, 159. 58–81.  https://doi.org/10.1016/j.earscirev.2016.05.005 Google Scholar
  56. Liu, J. R., Sun, Y., Lai, T., et al., 2009. Emplacement Age of the Songshugou Ultramafic Massif in the Qinling Orogenic Belt, and Geologic Implications. International Geology Review, 51(1): 58–76.  https://doi.org/10.1080/00206810802650576 Google Scholar
  57. Liu, X. C., Jahn, B. M., Hu, J., et al., 2011. Metamorphic Patterns and SHRIMP Zircon Ages of Medium-to-High Grade Rocks from the Tongbai Orogen, Central China: Implications for Multiple Accretion/collision Processes Prior to Terminal Continental Collision. Journal of Metamorphic Geology, 29(9): 979–1002.  https://doi.org/10.1111/j.1525-1314.2011.00952.x Google Scholar
  58. Liu, X. C., Jahn, B. M., Li, S. Z., et al., 2013. U/Pb Zircon Age and Geo-chemical Constraints on Tectonic Evolution of the Paleozoic Accre-tionary Orogenic System in the Tongbai Orogen, Central China. Tectonophysics, 599. 67–88.  https://doi.org/10.1016/j.tecto.2013.04.003 Google Scholar
  59. Molina, J., Poli, S., 2000. Carbonate Stability and Fluid Composition in Subducted Oceanic Crust: An Experimental Study on H2O-CO2-Bearing Basalts. Earth and Planetary Science Letters, 176(3/4): 295–310.  https://doi.org/10.1016/s0012-821x(00)00021-2 Google Scholar
  60. Muller, R. D., Sdrolias, M., Gaina, G., et al., 2008. Age, Spreading Rates, and Spreading Asymmetry of the World’s Ocean Crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006.  https://doi.org/10.1029/2007gc001743 Google Scholar
  61. Nie, H., Yang, J. Z., Zhou, G. Y., et al., 2017. Geochemical and Re-Os Isotope Constraints on the Origin and Age of the Songshugou Peridotite Massif in the Qinling Orogen, Central China. Lithos, 292/293: 307–319.  https://doi.org/10.1016/j.lithos.2017.09.009 Google Scholar
  62. Pattison, D. R. M., de Capitani, C., Gaidies, E., 2011. Petrological Consequences of Variations in Metamorphic Reaction Affinity. Journal of Metamorphic Geology, 29(9): 953–977.  https://doi.org/10.1111/j.1525-1314.2011.00950.x Google Scholar
  63. Pearce, J. A., Robinson, P. T., 2010. The Troodos Ophiolitic Complex Probably Formed in a Subduction Initiation, Slab Edge Setting. Gond-wana Research, 18(1): 60–81.  https://doi.org/10.1016/j.gr.2009.12.003 Google Scholar
  64. Peng, S. B., Kusky, T. M., Jiang, X. E., et al., 2012. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China’s Amalgamation History with the Rodinian Super continent. Gondwana Research, 21(2/3): 577–594.  https://doi.org/10.1016/j.gr.2011.07.010 Google Scholar
  65. Perchuk, A. L., Burchard, M., Maresch, W. V., et al., 2005. Fluid-Mediated Modification of Garnet Interiors under Ultrahigh-Pressure Conditions. Terra Nova, 17(6): 545–553.  https://doi.org/10.1111/j.1365-3121.2005.00647.x Google Scholar
  66. Perchuk, A. L., Burchard, M., Maresch, W. V., et al., 2008. Melting of Hydrous and Carbonate Mineral Inclusions in Garnet Host during Ultrahigh Pressure Experiments. Lithos, 103(1/2): 25–45.  https://doi.org/10.1016/j.lithos.2007.09.008 Google Scholar
  67. Pouchou, J. L., Pichoir, E., 1985. ‘PAP’π(pZ) Procedure for Improved Quantitative Microanalysis. In: Armstrong, J. T., ed., Microbeam Analysis. San Francisco Press, San Francisco. 104–106Google Scholar
  68. Qian, J. H., Yang, X. Q., Liu, L., et al., 2013. Zircon U-Pb, Mineral Inclusions, Lu-Hf Isotopic Data and Their Geological Significance of Garnet Amphibolite from Songshugou, North Qinling. Acta Petrologica Sinica, 29(9): 3087–3098 (in Chinese with English Abstract)Google Scholar
  69. Shi, Y. R., Liu, D. Y., Zhang, Z. Q., et al., 2007. SHRIMP Zircon U-Pb Dating of Gabbro and Granite from the Huashan Ophiolite, Qinling Orogenic Belt, China: Neoproterozoic Suture on the Northern Margin of the Yangtze Craton. Acta Geologica Sinica—English Edition, 81(2): 239–243.  https://doi.org/10.1111/j.1755-6724.2007.tb00947.x Google Scholar
  70. Smit, M. A., Scherer, E. E., Mezger, K., 2013. Peak Metamorphic Temperatures from Cation Diffusion Zoning in Garnet. Journal of Metamorphic Geology, 31(3): 339–358.  https://doi.org/10.1111/jmg.12024 Google Scholar
  71. Song, S. G., Su, L., Yang, H., et al., 1998. Pedogenesis and Emplacement of the Songshugou Peridotite in Shagnan, Shaanxi. Acta Petrologica Sinica, 14(2): 212–221 (in Chinese with English Abstract)Google Scholar
  72. Spear, F., 1993. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Mineralogical Society of America Monograph. Mineralogical Society of America, Washington DCGoogle Scholar
  73. Tang, L., Santosh, M., Dong, Y. P., et al., 2016. Early Paleozoic Tectonic Evolution of the North Qinling Orogenic Belt: Evidence from Geochemistry, Phase Equilibrium Modeling and Geochronology of Metamorphosed Mafic Rocks from the Songshugou Ophiolite. Gondwana Research, 30. 48–64.  https://doi.org/10.1016/j.gr.2014.10.006 Google Scholar
  74. Varne, R., Brown, A. V., Jenner, G. A., et al., 2000. Macquarie Island: Its Geology and Structural History, and the Timing and Tectonic Setting of Its N-MORB to E-MORB Magmatism. In: Dilek, Y., Moores, E. M., Elthon, D., et al., eds., Ophiolites and Oceanic Crust: New Insights from Field Studies and Ocan Drilling Program. Geological Society of America, Special Publication, 349. 301–320Google Scholar
  75. Vogt, K., Castro, A., Gerya, T., et al., 2013. Numerical Modeling of Geochemical Variations Caused by Crustal Relamination. Geochemistry, Geophysics, Geosystems, 14(2): 470–487.  https://doi.org/10.1002/ggge.20072 Google Scholar
  76. Wang, Y., Liu, L., Zhou, D. W., 1997. Protolith Properties of High-Pressure Quartzo-Feldspathic Granulite Discovered in Songshugou Area, East Qinling. Journal of Northwest University (Natural Science Edition), 27(6): 525–528 (in Chinese with English Abstract)Google Scholar
  77. Wang, T., Pei, X. Z., Wang, X. X., et al., 2005. Orogen-Parallel Westward Oblique Uplift of the Qinling Basement Complex in the Core of the Qinling Orogen (China): An Example of Oblique Extrusion of Deep-Seated Metamorphic Rocks in a Collisional Orogen. The Journal of Geology, 113(2): 181–200.  https://doi.org/10.1086/427668 Google Scholar
  78. Wang, H., Wu, Y. B., Gao, S., et al., 2011. Eclogite Origin and Timings in the North Qinling Terrane, and Their Bearing on the Amalgamation of the South and North China Blocks. Journal of Metamorphic Geology, 29(9): 1019–1031.  https://doi.org/10.1111/j.1525-1314.2011.00955.x Google Scholar
  79. Wang, H., Wu, Y. B., Gao, S., et al., 2014. Deep Subduction of Continental Crust in Accretionary Orogen: Evidence from U-Pb Dating on Diamond-Bearing Zircons from the Qinling Orogen, Central China. Lithos, 190/191: 420–429.  https://doi.org/10.1016/j.lithos.2013.12.021 Google Scholar
  80. Wei, C. J., Clarke, G. L., 2011. Calculated Phase Equilibria for MORB Compositions: AReappraisal of the Metamorphic Evolution of Lawso-nite Eclogite. Journal of Metamorphic Geology, 29(9): 939–952.  https://doi.org/10.1111/j.1525-1314.2011.00948.x Google Scholar
  81. Wessel, P., Smith, W. H. F., Scharroo, R., et al., 2013. Generic Mapping Tools: Improved Version Released. EOS, Transactions American Geophysical Union, 94(45): 409–410.  https://doi.org/10.1002/2013eo450001 Google Scholar
  82. White, R. W., Powell, R., 2002. Melt Loss and the Preservation of Granulite Facies Mineral Assemblages. Journal of Metamorphic Geology, 20(7): 621–632.  https://doi.org/10.1046/j.1525-1314.2002.00206_20_7.x Google Scholar
  83. White, R. W., Powell, R., Clarke, G. L., 2002. The Interpretation of Reaction Textures in Fe-Rich Metapelitic Granulites of the Musgrave Block, Central Australia: Constraints from Mineral Equilibria Calculations in the System K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 20(1): 41–55.  https://doi.org/10.1046/j.0263-4929.2001.00349.x Google Scholar
  84. White, R. W., Powell, R., Holland, T. J. B., 2007. Progress Relating to Calculation of Partial Melting Equilibria for Metapelites. Journal of Metamorphic Geology, 25(5): 511–527.  https://doi.org/10.1111/j.1525-1314.2007.00711.x Google Scholar
  85. Wu, Y. B., Zheng, Y. E., 2013. Tectonic Evolution of a Composite Collision Orogen: An Overview on the Qinling-Tongbai-Hong’an-Dabie-Sulu Oogenic Belt in Central China. Gondwana Research, 23(4): 1402–1428.  https://doi.org/10.1016/j.gr.2012.09.007 Google Scholar
  86. Yan, Q. R., Chen, J. L., Wang, Z. Q., et al., 2008. Zircon U-Pb and Geochemical Analyses for Leucocratic Intrusive Rocks in Pillow Lavas in the Danfeng Group, North Qinling Mountains, China. Science in China Series D: Earth Sciences, 51(2): 249–262.  https://doi.org/10.1007/sll430-007-0144-3 Google Scholar
  87. Yang, Y., Chen, N. S., Lu, Q., et al., 1994. Characteristics of Composition Zoning of Garnet and Amphibole and Metamorphic Processes of Garnet-Amphibole Rocks from Songshugou Area, Shangnan, Shaanxi Province. Acta Petrologica Sinica, 10(4): 401–412 (in Chinese with English Abstract)Google Scholar
  88. Yang, J. S., Xu, Z. Q., Dobrzhinetskaya, L. R., et al., 2003. Discovery of Metamorphic Diamonds in Central China: An Indication of a >4 000-km-Long Zone of Deep Subduction Resulting from Multiple Continental Collisions. Terra Nova, 15(6): 370–379.  https://doi.org/10.1046/j.1365-3121.2003.00511.x Google Scholar
  89. Yin, A., Manning, C. E., Lovera, O., et al., 2007. Early Paleozoic Tectonic and Thermomechanical Evolution of Ultrahigh-Pressure (UHP) Metamorphic Rocks in the Northern Tibetan Plateau, Northwest China. International Geology Review, 49(8): 681–716.  https://doi.org/10.2747/0020-6814.49.8.681 Google Scholar
  90. Yu, S., Li, S. Z., Zhao, S. J., et al., 2015. Long History of a Grenville Orogen Relic—The North Qinling Terrane: Evolution of the Qinling Oro-genic Belt from Rodinia to Gondwana. Precambrian Research, 271. 98–117.  https://doi.org/10.1016/j.precamres.2015.09.020 Google Scholar
  91. Yu, H., Zhang, H. F., Li, X. H., et al., 2016. Tectonic Evolution of the North Qinling Orogen from Subduction to Collision and Exhumation: Evidence from Zircons in Metamorphic Rocks of the Qinling Group. Gondwana Research, 30. 65–78.  https://doi.org/10.1016/j.gr.2015.07.003 Google Scholar
  92. Yu, H., Zhang, H. F., Santosh, M., 2017. Mylonitized Peridotites of Songshugou in the Qinling Orogen, Central China: A Fragment of Fossil Oceanic Lithosphere Mantle. Gondwana Research, 52(12): 1–17.  https://doi.org/10.1016/j.gr.2017.08.007 Google Scholar
  93. Zeh, A., Holness, M. B., 2003. The Effect of Reaction Overstep on Garnet Microtextures in Metapelitic Rocks of the Ilesha Schist Belt, SW Nigeria. Journal of Petrology, 44(6): 967–994.  https://doi.org/10.1093/petrology/44.6.967 Google Scholar
  94. Zhang, Z. J., 1999. Metamorphic Evolution of Garnet-Clinopyroxene-Amphibole Rocks from the Proterozoic Songshugou Mafic-Ultramafic Complex, Qinling Mountains, Central China. Island Arc, 8(2): 259–280.  https://doi.org/10.1046/j.1440-1738.1999.00236.x Google Scholar
  95. Zhang, Q., Wang, C. Y., Liu, D. Y., et al., 2008. A Brief Review of Ophio-lites in China. Journal of Asian Earth Sciences, 32(5/6): 308–324.  https://doi.org/10.1016/jjseaes.2007.11.012 Google Scholar
  96. Zhang, H. F., Yu, H., Zhou, D. W., et al., 2015. The Meta-Gabbroic Complex of Fushui in North Qinling Orogen: A Case of Syn-Subduction Mafic Magmatism. Gondwana Research, 28(1): 262–275.  https://doi.org/10.1016/j.gr.2014.04.010 Google Scholar
  97. Zhang, H. F., Yu, H., 2019. Petrological and Tectonic Evolution of Orogenic Peridotite Massif: A Case of Songshugou Peridotites. Earth Science, 44(4): 1057–1066 (in Chinese with English Abstract)Google Scholar
  98. Zhao, J. H., Asimow, P. D., Zhou, M. F., et al., 2017. An Andean-Type Arc System in Rodinia Constrained by the Neoproterozoic Shimian Ophio-lite in South China. Precambrian Research, 296. 93–111.  https://doi.org/10.1016/j.precamres.2017.04.017 Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, School of Earth and Space SciencesPeking UniversityBeijingChina
  2. 2.State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and ResourcesChina University of GeosciencesBeijingChina

Personalised recommendations