Advertisement

Journal of Earth Science

, Volume 30, Issue 3, pp 666–678 | Cite as

Zircon from Orogenic Peridotite: An Ideal Indicator for Mantle-Crust Interaction in Subduction Zones

  • Yi Zhao
  • Jianping ZhengEmail author
  • Qing Xiong
Special Issue on Ophiolite, Orogenic Magmatism and Metamorphism Dedicated to IGCP 649: Diamonds and Recycled Mantle
  • 5 Downloads

Abstract

The orogenic peridotites can be subdivided into crust- and mantle-derived types. They record complex geological processes in subduction and collision zones. The crust-derived peridotites are derived from cumulates crystallized from ultramafic-mafic magmas in deep continental crust, an early mantle-crust interaction, prior to subduction. The mantle-derived orogenic peridotites are originated from subcontinental lithospheric mantle (SCLM) wedge and other mantle domains, and are later involved in the subduction channel and orogenic system. The mantle-derived peridotites usually record complex metasomatism, ultra-high pressure (UHP) metamorphism and mantle-crust interaction during the orogenic processes. Zircons are rarely found in orogenic peridotites. These zircons in orogenic peridotites are generally formed during metasomatism, they can be divided into old zircons (mainly the cores of residual magmatic and recrystallized) and newly grown zircons. Three key factors for zircon formation in orogenic peridotites are that: (1) zircon has strong crystallization ability, and Zr is easier to exchange Si in zircon crystal structure than other elements in the mantle; (2) metamorphic destruction of Zr-bearing minerals and precipitation of intergranular melts during the high-grade metamorphism can nucleate zircon under sub-solidus conditions; (3) the melts/fluids released from the subducted crust can metasomatize the mantle wedge to form zircons. In-situ studies on zircons and zircon inclusions enclosed in mantle minerals indicate that zircon can be an ideal indicator for mantle- crust interaction in subduction zones. The inclusions in zircons and Hf-O isotope of zircons are effective to reflect the composition of the melts/fluids, source properties, and the physical and chemical conditions. Dating of the zircons has been widely used in the studies of lithospheric evolution and crust-mantle interaction. During the complex processes of plate convergence, the orogenic peridotites can be subjected to the melt/fluid metasomatism, modifying the mineral and elemental compositions of peridotites. Thus, zircon is very useful to unravel the history of specific lithospheric mantle and the relationship between continental cratonic cores and their margins.

Key Words

orogenic peridotite zircon mantle-crust interaction subduction zone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We sincerely appreciate the support from the National Natural Science Foundation of China (Nos. 41520104003 and 41873023) and the DREAM project of the MOST (No. 2016YFC0600403). We also thank Profs. Jingsui Yang and Changqian Ma for their invitation. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1220-2.

References Cited

  1. Amelin, Y., Lee, D. C., Halliday, A. N., 2000. Early-Middle Archaean Crustal Evolution Deduced from Lu-Hf and U-Pb Isotopic Studies of Single Zircon Grains. Geochimica et Cosmochimica Acta, 64(24): 4205–4225.  https://doi.org/10.1016/s0016-7037(00)00493-2 CrossRefGoogle Scholar
  2. Ayers, J. C., de la Cruz, K., Miller, C., et al., 2003. Experimental Study of Zircon Coarsening in Quartzite±H2O at 1.0 GPa and 1 000 °C, with Implications for Geochronological Studies of High-Grade Metamorphism. American Mineralogist, 88(2/3): 365–376.  https://doi.org/10.2138/am-2003-2-313 CrossRefGoogle Scholar
  3. Bai, W. J., Zhou, M. F., Robinson, P. T., 2000. Origins of Podiform Chromite, Diamonds and Their Associated Minerals at Luobusa, Tibet. Seismological Press, Beijing. 98 (in Chinese with English Abstract)Google Scholar
  4. Bea, F., Fershtater, G. B., Montero, P., et al., 2001. Recycling of Continental Crust into the Mantle as Revealed by Kytlym Dunite Zircons, Ural Mts, Russia. Terra Nova, 13(6): 407–412.  https://doi.org/10.1046/j.1365-3121.2001.00364.x CrossRefGoogle Scholar
  5. Belousova, E., Griffin, W., O’Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602–622.  https://doi.org/10.1007/s00410-002-0364-7 CrossRefGoogle Scholar
  6. Bingen, B., Austrheim, H., Whitehouse, M. J., 2001. Ilmenite as a Source for Zirconium during High-Grade Metamorphism? Textural Evidence from the Caledonides of Western Norway and Implications for Zircon Geochronology. Journal of Petrology, 42(2): 355–375.  https://doi.org/10.1093/petrology/42.2.355 CrossRefGoogle Scholar
  7. Bodet, F., Schärer, U., 2000. Evolution of the SE-Asian Continent from U-Pb and Hf Isotopes in Single Grains of Zircon and Baddeleyite from Large Rivers. Geochimica et Cosmochimica Acta, 64(12): 2067–2091.  https://doi.org/10.1016/s0016-7037(00)00352-5 CrossRefGoogle Scholar
  8. Brueckner, H. K., Medaris, L. G., 1998. A Tale of Two Orogens—The Contrasting P-T-t History and Geochemical Evolution of Mantle in Ultrahigh-Pressure (UHP) Metamorphic Terranes of the Norwegian Caledonides and the Czech Variscides. Schweizerische Mineralogische and Petrographische Mutteilungen, 78: 293–307Google Scholar
  9. Brueckner, H. K., Medaris, L. G., 2000. A General Model for the Intrusion and Evolution of ?Mantle’ Garnet Peridotites in High-Pressure and Ultra-High- Pressure Metamorphic Terranes. Journal of Metamorphic Geology, 18(2): 123–133.  https://doi.org/10.1046/j.1525-1314.2000.00250.x CrossRefGoogle Scholar
  10. Carswell, D. A., Harvey, M. A., Al-Samman, A., 1983. The Petrogenesis of Contrasting Fe-Ti and Mg-Cr Garnet Peridotite Types in the High Grade Gneiss Complex of Western Norway. Bulletin de Minéralogie, 106(6): 727–750.  https://doi.org/10.3406/bulmi.1983.7696 CrossRefGoogle Scholar
  11. Cao, Y., Song, S. G., Su, L., et al., 2016. Highly Refractory Peridotites in Songshugou, Qinling Orogen: Insights into Partial Melting and Melt/Fluid-Rock Reactions in Forearc Mantle. Lithos, 252/253: 234–254.  https://doi.org/10.1016/j.lithos.2016.03.002 CrossRefGoogle Scholar
  12. Chazot, G., Lowry, D., Menzies, M., et al., 1997. Oxygen Isotopic Composition of Hydrous and Anhydrous Mantle Peridotites. Geochimica et Cosmochimica Acta, 61(1): 161–169.  https://doi.org/10.1016/s0016-7037(96)00314-6 CrossRefGoogle Scholar
  13. Chen, R. X., Zheng, Y. F., Xie, L. W., 2010. Metamorphic Growth and Recrystallization of Zircon: Distinction by Simultaneous in-situ Analyses of Trace Elements, U-Th-Pb and Lu-Hf Isotopes in Zircons from Eclogite-Facies Rocks in the Sulu Orogen. Lithos, 114(1/2): 132–154.  https://doi.org/10.1016/j.lithos.2009.08.006 CrossRefGoogle Scholar
  14. Chen, R. X., Li, H. Y., Zheng, Y. F., et al., 2017. Crust-Mantle Interaction in a Continental Subduction Channel: Evidence from Orogenic Peridotites in North Qaidam, Northern Tibet. Journal of Petrology, 58(2): 191–226.  https://doi.org/10.1093/petrology/egx011 CrossRefGoogle Scholar
  15. Chen, Y., Su, B., Chu, Z. Y., 2017. Modification of an Ancient Subcontinental Lithospheric Mantle by Continental Subduction: Insight from the Maowu Garnet Peridotites in the Dabie UHP Belt, Eastern China. Lithos, 278-281: 54–71.  https://doi.org/10.1016/j.lithos.2017.01.025 Google Scholar
  16. Degeling, H., Eggins, S., Ellis, D. J., 2001. Zr Budgets for Metamorphic Reactions, and the Formation of Zircon from Garnet Breakdown. Mineralogical Magazine, 65(6): 749–758.  https://doi.org/10.1180/0026461016560006 CrossRefGoogle Scholar
  17. Ernst, W. G., Liou, J. G., 1995. Contrasting Plate-Tectonic Styles of the Qinling- Dabie-Sulu and Franciscan Metamorphic Belts. Geology, 23(4): 353–356.  https://doi.org/10.1130/0091-7613(1995)023<0353:cptsot>2.3.co;2 CrossRefGoogle Scholar
  18. Ernst, W. G., 2001. Subduction, Ultrahigh-Pressure Metamorphism, and Regurgitation of Buoyant Crustal Slices—Implications for Arcs and Continental Growth. Physics of the Earth and Planetary Interiors, 127(1/2/3/4): 253–275.  https://doi.org/10.1016/s0031-9201(01)00231-x Google Scholar
  19. Evans, B. W., 1977. Metamorphism of Alpine Peridotite and Serpentinite. Annual Review of Earth and Planetary Sciences, 56(1): 397–447.  https://doi.org/10.1146/annurev.ea.05.050177.002145 CrossRefGoogle Scholar
  20. Fraser, G., Ellis, D., Eggins, S., 1997. Zirconium Abundance in Granulite- Facies Minerals, with Implications for Zircon Geochronology in High-Grade Rocks. Geology, 25(7): 607–610.  https://doi.org/10.1130/0091-7613(1997)025<0607:zaigfm>2.3.co;2 CrossRefGoogle Scholar
  21. Gebauer, D., 1996. A P-T-t Path for a (Ultra-)High-Pressure Ultramafic/Mafic Rock Associations and Their Felsic Country-Rocks Based on SHRIMP- Dating of Magmatic and Metamorphic Zircon Domains. Example: Alpe Arami (Central Swiss Alps). In: Basu, A., Hart, S., eds., Special AGU-Monograph Dedicated to Profs. Tilton and Tatsumoto: Earth Processes: Reading the Isotopic Code. Geophysical Monograph Series, American Geophysical Union. 307–329.  https://doi.org/10.1029/GM095p0307 Google Scholar
  22. Grieco, G., Ferrario, A., Quadt, A. V., et al., 2001. The Zircon-Bearing Chromitites of the Phlogopite Peridotite of Finero (Ivrea Zone, Southern Alps): Evidence and Geochronology of a Metasomatized Mantle Slab. Journal of Petrology, 42(1): 89–101.  https://doi.org/10.1093/petrology/42.1.89 CrossRefGoogle Scholar
  23. Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133–147.  https://doi.org/10.1016/s0016-7037(99)00343-9 CrossRefGoogle Scholar
  24. Griffin, W. L., Belousova, E. A., Shee, S. R., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131(3/4): 231–282.  https://doi.org/10.1016/j.precamres.2003.12.011 CrossRefGoogle Scholar
  25. Goldfarb, R. J., Groves, D. I., Gardoll, S., 2001. Orogenic Gold and Geologic Time: A Global Synthesis. Ore Geology Reviews, 18(1/2): 1–75.  https://doi.org/10.1016/s0169-1368(01)00016-6 CrossRefGoogle Scholar
  26. Harrison, T. M., Watson, E. B., 1983. Kinetics of Zircon Dissolution and Zirconium Diffusion in Granitic Melts of Variable Water Content. Contributions to Mineralogy and Petrology, 84(1): 66–72.  https://doi.org/10.1007/bf01132331 CrossRefGoogle Scholar
  27. Harrison, T. M., Watson, E. B., Aikman, A. B., 2007. Temperature Spectra of Zircon Crystallization in Plutonic Rocks. Geology, 35(7): 635–638.  https://doi.org/10.1130/g23505a.1 CrossRefGoogle Scholar
  28. Helmers, H., Maaskant, P., Hartel, T. H. D., 1990. Garnet Peridotite and Associated High-Grade Rocks from Sulawesi, Indonesia. Lithos, 25(1/2/3): 171–188.  https://doi.org/10.1016/0024-4937(90)90013-q CrossRefGoogle Scholar
  29. Hermann, J., Rubatto, D., Korsakov, A., et al., 2001. Multiple Zircon Growth during Fast Exhumation of Diamondiferous, Deeply Subducted Continental Crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology, 141(1): 66–82.  https://doi.org/10.1007/s004100000218 CrossRefGoogle Scholar
  30. Hermann, J., Rubatto, D., Trommsdorff, V., 2006. Sub-Solidus Oligocene Zircon Formation in Garnet Peridotite during Fast Decompression and Fluid Infiltration (Duria, Central Alps). Mineralogy and Petrology, 88(1/2): 181–206.  https://doi.org/10.1007/s00710-006-0155-3 CrossRefGoogle Scholar
  31. Kadarusman, A., Parkinson, C. D., 2000. Petrology and P-T Evolution of Garnet Peridotites from Central Sulawesi, Indonesia. Journal of Metamorphic Geology, 18(2): 193–209.  https://doi.org/10.1046/j.1525-1314.2000.00238.x CrossRefGoogle Scholar
  32. Katayama, I., Muko, A., Iizuka, T., et al., 2003. Dating of Zircon from Ti- Clinohumite-Bearing Garnet Peridotite: Implication for Timing of Mantle Metasomatism. Geology, 31(8): 713–716.  https://doi.org/10.1130/g19525.1 CrossRefGoogle Scholar
  33. Kinny, P. D., Mass, R., 2003. Lu-Hf and Sm-Nd Isotope Systems in Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327–341.  https://doi.org/10.2113/0530327 CrossRefGoogle Scholar
  34. Knudsen, T. L., Griffin, W., Hartz, E., et al., 2001. In-situ Hafnium and Lead Isotope Analyses of Detrital Zircons from the Devonian Sedimentary Basin of NE Greenland: A Record of Repeated Crustal Reworking. Contributions to Mineralogy and Petrology, 141(1): 83–94.  https://doi.org/10.1007/s004100000220 CrossRefGoogle Scholar
  35. Li, H. Y., Chen, R. X., Zheng, Y. F., et al., 2016. The Crust-Mantle Interaction in Continental Subduction Channels: Zircon Evidence from Orogenic Peridotite in the Sulu Orogen. Journal of Geophysical Research: Solid Earth, 121(2): 687–712.  https://doi.org/10.1002/2015jb012231 Google Scholar
  36. Li, H. Y., Chen, R. X., Zheng, Y. F., et al., 2018. Crustal Metasomatism at the Slab-Mantle Interface in a Continental Subduction Channel: Geochemical Evidence from Orogenic Peridotite in the Sulu Orogen. Journal of Geophysical Research: Solid Earth, 123(3): 2174–2198.  https://doi.org/10.1002/2017jb014015 Google Scholar
  37. Li, W. C., Chen, R. X., Zheng, Y. F., et al., 2013. Zirconological Tracing of Transition between Aqueous Fluid and Hydrous Melt in the Crust: Constraints from Pegmatite Vein and Host Gneiss in the Sulu Orogen. Lithos, 162/163: 157–174.  https://doi.org/10.1016/j.lithos.2013.01.004 CrossRefGoogle Scholar
  38. Li, X. P., Yang, J. S., Robinson, P., et al., 2011. Petrology and Geochemistry of UHP-Metamorphosed Ultramafic-Mafic Rocks from the Main Hole of the Chinese Continental Scientific Drilling Project (CCSD-MH), China: Fluid/Melt-Rock Interaction. Journal of Asian Earth Sciences, 42(4): 661–683.  https://doi.org/10.1016/j.jseaes.2011.01.010 CrossRefGoogle Scholar
  39. Liati, A., Franz, L., Gebauer, D., et al., 2004. The Timing of Mantle and Crustal Events in South Namibia, as Defined by SHRIMP-Dating of Zircon Domains from a Garnet Peridotite Xenolith of the Gibeon Kimberlite Province. Journal of African Earth Sciences, 39(3/4/5): 147–157.  https://doi.org/10.1016/j.jafrearsci.2004.07.054 CrossRefGoogle Scholar
  40. Liati, A., Gebauer, D., 2009. Crustal Origin of Zircon in a Garnet Peridotite: A Study of U-Pb SHRIMP Dating, Mineral Inclusions and REE Geochemistry (Erzgebirge, Bohemian Massif). European Journal of Mineralogy, 21(4): 737–750.  https://doi.org/10.1127/0935-1221/2009/0021-1939 CrossRefGoogle Scholar
  41. Liou, J. G., Tsujimori, T., Zhang, R. Y., et al., 2004. Global UHP Metamorphism and Continental Subduction/Collision: The Himalayan Model. International Geology Review, 46(1): 1–27.  https://doi.org/10.2747/0020-6814.46.1.1 CrossRefGoogle Scholar
  42. Liou, J. G., Zhang, R. Y., Ernst, W. G., 2007. Very High-Pressure Orogenic Garnet Peridotites. Proceedings of the National Academy of Sciences, 104(22): 9116–9121.  https://doi.org/10.1073/pnas.0607300104 CrossRefGoogle Scholar
  43. Liou, J. G., Ernst, W. G., Zhang, R. Y., et al., 2009. Ultrahigh-Pressure Minerals and Metamorphic Terranes—The View from China. Journal of Asian Earth Sciences, 35(3/4): 199–231.  https://doi.org/10.1016/j.jseaes.2008.10.012 CrossRefGoogle Scholar
  44. Liu, F. L., Liou, J. G., 2011. Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism: A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks. Journal of Asian Earth Sciences, 40(1): 1–39.  https://doi.org/10.1016/j.jseaes.2010.08.007 CrossRefGoogle Scholar
  45. Lu, F. X., Wang, Y., Chen, M. H., et al., 1998. Geochemical Characteristics and Emplacement Ages of the Mengyin Kimberlites, Shandong Province, China. International Geology Review, 40(11): 998–1006.  https://doi.org/10.1080/00206819809465251 CrossRefGoogle Scholar
  46. Maruyama, S., Liou, J. G., Terabayashi, M., 1996. Blueschists and Eclogites of the World and Their Exhumation. International Geology Review, 38(6): 485–594. https://doi.org/10.1080/00206819709465347 CrossRefGoogle Scholar
  47. Mattey, D., Lowry, D., Macpherson, C., 1994. Oxygen Isotope Composition of Mantle Peridotite. Earth and Planetary Science Letters, 128(3/4): 231–241.  https://doi.org/10.1016/0012-821x(94)90147-3 CrossRefGoogle Scholar
  48. Medaris, L. G., Carswell, D. A., 1990. Petrogenesis of Mg-Cr Garnet Peridotites in European Metamorphic Belt. In: Carswell, D. A., ed., Eclogite Facies Rocks. Chapman & Hall, New York. 260–290Google Scholar
  49. Medaris, L. G., 1999. Garnet Peridotites in Eurasian High-Pressure and Ultrahigh-Pressure Terranes: A Diversity of Origins and Thermal Histories. International Geology Review, 41(9): 799–815.  https://doi.org/10.1080/00206819909465170 CrossRefGoogle Scholar
  50. Nakajima, Y., 1998. Ti-Clinohumite-Bearing Garnet Peridotite from Kumdykol Area in the Kokchetav UHP Complex, Northern Kazakhstan. Eos Transactions of the American Geophysical Union. May 26–29, 1998. Boston. 79Google Scholar
  51. O’Hara, M. J., Richardson, S. W., Wilson, G., 1971. Garnet-Peridotite Stability and Occurrence in Crust and Mantle. Contributions to Mineralogy and Petrology, 32(1): 48–68.  https://doi.org/10.1007/bf00372233 CrossRefGoogle Scholar
  52. Ota, T., Gladkochub, D. P., Sklyarov, E. V., et al., 2004. P-T History of Garnet-Websterites in the Sharyzhalgai Complex, Southwestern Margin of Siberian Craton: Evidence for Paleoproterozoic High-Pressure Metamorphism. Precambrian Research, 132(4): 327–348.  https://doi.org/10.1016/j.precamres.2004.03.009 CrossRefGoogle Scholar
  53. Palme, H., O’Neill, H. St. O., 2003. Cosmochemical Constraints of Mantle Composition. Treatise on Geochemistry, 2: 1–38Google Scholar
  54. Patchett, P. J., Kouvo, O., Hedge, C. E., et al., 1981. Evolution of Continental Crust and Mantle Heterogeneity: Evidence from Hf Isotopes. Contributions to Mineralogy and Petrology, 78(3): 279–297.  https://doi.org/10.1007/bf00398923 CrossRefGoogle Scholar
  55. Rubatto, D., Gebauer, D., Compagnoni, R., 1999. Dating of Eclogite-Facies Zircons: The Age of Alpine Metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth and Planetary Science Letters, 167(3/4): 141–158.  https://doi.org/10.1016/s0012-821x(99)00031-x CrossRefGoogle Scholar
  56. Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2): 123–138.  https://doi.org/10.1016/s0009-2541(01)00355-2 CrossRefGoogle Scholar
  57. Rubatto, D., Hermann, J., 2003. Zircon Formation during Fluid Circulation in Eclogites (Monviso, Western Alps): Implications for Zr and Hf Budget in Subduction Zones. Geochimica et Cosmochimica Acta, 67(12): 2173–2187.  https://doi.org/10.1016/s0016-7037(02)01321-2 CrossRefGoogle Scholar
  58. Rumble, D., Giorgis, D., Ireland, T., et al., 2002. Low δ18O Zircons, U-Pb Dating, and the Age of the Qinglongshan Oxygen and Hydrogen Isotope Anomaly near Donghai in Jiangsu Province, China. Geochimica et Cosmochimica Acta, 66(12): 2299–2306.  https://doi.org/10.1016/s0016-7037(02)00844-x CrossRefGoogle Scholar
  59. Scambelluri, M., Hermann, J., Morten, L., et al., 2006. Meltversus Fluid-Induced Metasomatism in Spinel to Garnet Wedge Peridotites (Ulten Zone, Eastern Italian Alps): Clues from Trace Element and Li Abundances. Contributions to Mineralogy and Petrology, 151(4): 372–394.  https://doi.org/10.1007/s00410-006-0064-9 CrossRefGoogle Scholar
  60. Scambelluri, M., Pettke, T., Rampone, E., et al., 2014. Petrology and Trace Element Budgets of High-Pressure Peridotites Indicate Subduction Dehydration of Serpentinized Mantle (Cima Di Gagnone, Central Alps, Switzerland). Journal of Petrology, 55(3): 459–498.  https://doi.org/10.1093/petrology/egt068 CrossRefGoogle Scholar
  61. Shen, J., Li, S. G., Wang, S. J., et al., 2018. Subducted Mg-Rich Carbonates into the Deep Mantle Wedge. Earth and Planetary Science Letters, 503: 118–130.  https://doi.org/10.1016/j.epsl.2018.09.011 CrossRefGoogle Scholar
  62. Smith, D., Griffin, W. L., 2005. Garnetite Xenoliths and Mantle-Water Interactions below the Colorado Plateau, Southwestern United States. Journal of Petrology, 46(9): 1901–1924.  https://doi.org/10.1093/petrology/egi042 CrossRefGoogle Scholar
  63. Spengler, D., Brueckner, H. K., van Roermund, H. L. M., et al., 2009. Long-Lived, Cold Burial of Baltica to 200 km Depth. Earth and Planetary Science Letters, 281(1/2): 27–35.  https://doi.org/10.1016/j.epsl.2009.02.001 CrossRefGoogle Scholar
  64. Song, S. G., Su, L., 1998. Rheological Properties of Mantle Peridotites at Yushigou in the North Qilian Mountains and Their Implications for Plate Dynamics. Acta Geologica Sinica—English Edition, 72(2): 131–141.  https://doi.org/10.1111/j.1755-6724.1998.tb00389.x Google Scholar
  65. Song, S. G., Zhang, L. F., Niu, Y. L., 2004. Ultra-Deep Origin of Garnet Peridotite from the North Qaidam Ultrahigh-Pressure Belt, Northern Tibetan Plateau, NW China. American Mineralogist, 89(8/9): 1330–1336.  https://doi.org/10.2138/am-2004-8-922 CrossRefGoogle Scholar
  66. Song, S., Zhang, L., Niu, Y., et al., 2005. Geochronology of Diamond-Bearing Zircons from Garnet Peridotite in the North Qaidam UHPM Belt, Northern Tibetan Plateau: A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Collision. Earth and Planetary Science Letters, 234(1/2): 99–118.  https://doi.org/10.1016/j.epsl.2005.02.036 CrossRefGoogle Scholar
  67. Song, S. G., Su, L., Niu, Y. L., et al., 2007. Petrological and Geochemical Constraints on the Origin of Garnet Peridotite in the North Qaidam Ultrahigh- Pressure Metamorphic Belt, Northwestern China. Lithos, 96(1/2): 243–265.  https://doi.org/10.1016/j.lithos.2006.09.017 CrossRefGoogle Scholar
  68. Su, B., Chen, Y., Guo, S., et al., 2016. Carbonatitic Metasomatism in Orogenic Dunites from Lijiatun in the Sulu UHP Terrane, Eastern China. Lithos, 262: 266–284.  https://doi.org/10.1016/j.lithos.2016.07.007 CrossRefGoogle Scholar
  69. Su, L., Song, S. G., Wang, Z. H., 1999. CH4-Rich Fluid Inclusions in the Yushigou Mantle Peridotite and Their Implications, North Qilian Mountains, China. Chinese Science Bulletin, 44(21): 1992–1995.  https://doi.org/10.1007/bf02887126 CrossRefGoogle Scholar
  70. Tang, M., Wang, X. L., Shu, X. J., et al., 2014. Hafnium Isotopic Heterogeneity in Zircons from Granitic Rocks: Geochemical Evaluation and Modeling of “Zircon Effect” in Crustal Anatexis. Earth and Planetary Science Letters, 389: 188–199.  https://doi.org/10.1016/j.epsl.2013.12.036 CrossRefGoogle Scholar
  71. Vavra, G., Schmid, R., Gebauer, D., 1999. Internal Morphology, Habit and U-Th-Pb Microanalysis of Amphibolite-to-Granulite Facies Zircons: Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134(4): 380–404.  https://doi.org/10.1007/s004100050492 CrossRefGoogle Scholar
  72. Vrijmoed, J. C., Austrheim, H., John, T., et al., 2013. Metasomatism in the Ultrahigh-Pressure Svartberget Garnet-Peridotite (Western Gneiss Region, Norway): Implications for the Transport of Crust-Derived Fluids within the Mantle. Journal of Petrology, 54(9): 1815–1848.  https://doi.org/10.1093/petrology/egt032 CrossRefGoogle Scholar
  73. Watson, E. B., 1996. Dissolution, Growth and Survival of Zircons during Crustal Fusion: Kinetic Principals, Geological Models and Implications for Isotopic Inheritance. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87(1/2): 43–56. https://doi.org/10.1017/s0263593300006465 CrossRefGoogle Scholar
  74. Whitehouse, M. J., Platt, J. P., 2003. Dating High-Grade Metamorphism—Constraints from Rare-Earth Elements in Zircon and Garnet. Contributions to Mineralogy and Petrology, 145(1): 61–74.  https://doi.org/10.1007/s00410-002-0432-z CrossRefGoogle Scholar
  75. Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185–187.  https://doi.org/10.2138/am.2010.3371 CrossRefGoogle Scholar
  76. Wu, Y. B., Zheng, Y. F., Zhao, Z. F., et al., 2006. U/Pb, Hf and O Isotope Evidence for Two Episodes of Fluid-Assisted Zircon Growth in Marble-Hosted Eclogites from the Dabie Orogen. Geochimica et Cosmochimica Acta, 70(14): 3743–3761.  https://doi.org/10.1016/j.gca.2006.05.011 CrossRefGoogle Scholar
  77. Xia, Q. K., Liu, J., Liu, S. C., et al., 2013. High Water Content in Mesozoic Primitive Basalts of the North China Craton and Implications on the Destruction of Cratonic Mantle Lithosphere. Earth and Planetary Science Letters, 361: 85–97.  https://doi.org/10.1016/j.epsl.2012.11.024 CrossRefGoogle Scholar
  78. Xiong, Q., Zheng, J. P., Griffin, W. L., et al., 2011. Zircons in the Shenglikou Ultrahigh-Pressure Garnet Peridotite Massif and Its Country Rocks from the North Qaidam Terrane (Western China): Meso- Neoproterozoic Crust-Mantle Coupling and Early Paleozoic Convergent Plate-Margin Processes. Precambrian Research, 187(1/2): 33–57.  https://doi.org/10.1016/j.precamres.2011.02.003 CrossRefGoogle Scholar
  79. Xiong, Q., Zheng, J. P., Griffin, W. L., et al., 2014. Pyroxenite Dykes in Orogenic Peridotite from North Qaidam (NE Tibet, China) Track Metasomatism and Segregation in the Mantle Wedge. Journal of Petrology, 55(12): 2347–2376.  https://doi.org/10.1093/petrology/egu059 CrossRefGoogle Scholar
  80. Xiong, Q., Griffin, W. L., Zheng, J. P., et al., 2015. Episodic Refertilization and Metasomatism of Archean Mantle: Evidence from an Orogenic Peridotite in North Qaidam (NE Tibet, China). Contributions to Mineralogy and Petrology, 169(3): 1–24.  https://doi.org/10.1007/s00410-015-1126-7 CrossRefGoogle Scholar
  81. Xiong, Q., Griffin, W. L., Zheng, J. P., et al., 2016. Southward Trench Migration at ~130–120 Ma Caused Accretion of the Neo-Tethyan Forearc Lithosphere in Tibetan Ophiolites. Earth and Planetary Science Letters, 438: 57–65.  https://doi.org/10.1016/j.epsl.2016.01.014 CrossRefGoogle Scholar
  82. Yang, J. J., Godard, G., Kienast, J. R., et al., 1993. Ultrahigh-Pressure (60 kbar) Magnesite-Bearing Garnet Peridotites from Northeastern Jiangsu, China. The Journal of Geology, 101(5): 541–554.  https://doi.org/10.1086/648248 CrossRefGoogle Scholar
  83. Yang, J. J., Powell, R., 2008. Ultrahigh-Pressure Garnet Peridotites from the Devolatilization of Sea-Floor Hydrated Ultramafic Rocks. Journal of Metamorphic Geology, 26(6): 695–716.  https://doi.org/10.1111/j.1525-1314.2008.00780.x CrossRefGoogle Scholar
  84. Yang, J. S., Li, T. F., Chen, S. Z., et al., 2009. Genesis of Garnet Peridotites in the Sulu UHP Belt: Examples from the Chinese Continental Scientific Drilling Project-Main Hole, PP1 and PP3 Drillholes. Tectonophysics, 475(2): 359–382.  https://doi.org/10.1016/j.tecto.2009.02.032 CrossRefGoogle Scholar
  85. Yang, Y. H., Wu, F. Y., Wilde, S. A., et al., 2009. In situ Perovskite Sr-Nd Isotopic Constraints on the Petrogenesis of the Ordovician Mengyin Kimberlites in the North China Craton. Chemical Geology, 264(1/2/3/4): 24–42.  https://doi.org/10.1016/j.chemgeo.2009.02.011 CrossRefGoogle Scholar
  86. Ye, K., Song, Y. R., Chen, Y., et al., 2009. Multistage Metamorphism of Orogenic Garnet-Lherzolite from Zhimafang, Sulu UHP Terrane, E. China: Implications for Mantle Wedge Convection during Progressive Oceanic and Continental Subduction. Lithos, 109(3/4): 155–175.  https://doi.org/10.1016/j.lithos.2008.08.005 CrossRefGoogle Scholar
  87. Yu, H., Zhang, H. F., Santosh, M., 2017. Mylonitized Peridotites of Songshugou in the Qinling Orogen, Central China: A Fragment of Fossil Oceanic Lithosphere Mantle. Gondwana Research, 52: 1–17.  https://doi.org/10.1016/j.gr.2017.08.007 CrossRefGoogle Scholar
  88. Zhang, R. Y., Liou, J. G., Yang, J. S., 2000. Petrochemical Constraints for Dual Origin of Garnet Peridotites from the Dabie-Sulu UHP Terrane, Eastern-Central China. Journal of Metamorphic Geology, 18(2): 149–166.  https://doi.org/10.1046/j.1525-1314.2000.00248.x CrossRefGoogle Scholar
  89. Zhang, R. Y., Yang, J. S., Wooden, J. L., et al., 2005. U-Pb SHRIMP Geochronology of Zircon in Garnet Peridotite from the Sulu UHP Terrane, China: Implications for Mantle Metasomatism and Subduction-Zone UHP Metamorphism. Earth and Planetary Science Letters, 237(3/4): 729–743.  https://doi.org/10.1016/j.epsl.2005.07.003 CrossRefGoogle Scholar
  90. Zhang, R. Y., Pan, Y. M., Yang, Y. H., et al., 2008. Chemical Composition and Ultrahigh-P Metamorphism of Garnet Peridotites from the Sulu UHP Terrane, China: Investigation of Major, Trace Elements and Hf Isotopes of Minerals. Chemical Geology, 255(1/2): 250–264.  https://doi.org/10.1016/j.chemgeo.2008.06.049 CrossRefGoogle Scholar
  91. Zhang, Z. M., Dong, X., Liou, J. G., et al., 2011. Metasomatism of Garnet Peridotite from Jiangzhuang, Southern Sulu UHP Belt: Constraints on the Interactions between Crust and Mantle Rocks during Subduction of Continental Lithosphere. Journal of Metamorphic Geology, 29(9): 917–937.  https://doi.org/10.1111/j.1525-1314.2011.00947.x CrossRefGoogle Scholar
  92. Zhao, Z. F., Zheng, Y. F., Wei, C. S., et al., 2008. Zircon U-Pb Ages, Hf and O Isotopes Constrain the Crustal Architecture of the Ultrahigh-Pressure Dabie Orogen in China. Chemical Geology, 253(3/4): 222–242.  https://doi.org/10.1016/j.chemgeo.2008.05.011 CrossRefGoogle Scholar
  93. Zheng, J. P., Zhang, R. Y., Griffin, W. L., et al., 2005. Heterogeneous and Metasomatized Mantle Recorded by Trace Elements in Minerals of the Donghai Garnet Peridotites, Sulu UHP Terrane, China. Chemical Geology, 221(3/4): 243–259.  https://doi.org/10.1016/j.chemgeo.2005.05.002 CrossRefGoogle Scholar
  94. Zheng, J. P., Griffin, W. L., O’Reilly, S. Y., et al., 2006. A Refractory Mantle Protolith in Younger Continental Crust, East-Central China: Age and Composition of Zircon in the Sulu Ultrahigh-Pressure Peridotite. Geology, 34(9): 705.  https://doi.org/10.1130/g22569.1 CrossRefGoogle Scholar
  95. Zheng, J. P., Griffin, W. L., O’Reilly, S. Y., et al., 2006. Mineral Chemistry of Peridotites from Paleozoic, Mesozoic and Cenozoic Lithosphere: Constraints on Mantle Evolution beneath Eastern China. Journal of Petrology, 47(11): 2233–2256.  https://doi.org/10.1093/petrology/egl042 CrossRefGoogle Scholar
  96. Zheng, J. P., Sun, M., Griffin, W. L., et al., 2008. Age and Geochemistry of Contrasting Peridotite Types in the Dabie UHP Belt, Eastern China: Petrogenetic and Geodynamic Implications. Chemical Geology, 247(1/2): 282–304.  https://doi.org/10.1016/j.chemgeo.2007.10.023 CrossRefGoogle Scholar
  97. Zheng, J. P., 2009. Comparison of Mantle-Derived Matierals from Different Spatiotemporal Settings: Implications for Destructive and Accretional Processes of the North China Craton. Chinese Science Bulletin, 54(19): 3397–3416.  https://doi.org/10.1007/s11434-009-0308-y Google Scholar
  98. Zheng, J. P., Tang, H. Y., Xiong, Q., et al., 2014. Linking Continental Deep Subduction with Destruction of a Cratonic Margin: Strongly Reworked North China SCLM Intruded in the Triassic Sulu UHP Belt. Contributions to Mineralogy and Petrology, 168(1): 1028.  https://doi.org/10.1007/s00410-014-1028-0 CrossRefGoogle Scholar
  99. Zheng, J. P., Xiong, Q., Zhao, Y., et al., 2019. Massif Peridotites from Subduction Zones: Records of Crust-Mantle Interaction. Science China Earth Sciences.  https://doi.org/10.1007/s11430-018-9346-6 Google Scholar
  100. Zheng, J. P., Zhao, Y., Xiong, Q., 2019. Genesis and Geological Significance of Zircons in Orogenic Peridotite. Earth Science, 44(4): 1067–1082.  https://doi.org/10.3799/dqkx.2018.375 (in Chinese with English Abstract)Google Scholar
  101. Zheng, Y. F., 2008. A Perspective View on Ultrahigh-Pressure Metamorphism and Continental Collision in the Dabie-Sulu Orogenic Belt. Science Bulletin, 53(20): 3081–3104.  https://doi.org/10.1007/s11434-008-0388-0 CrossRefGoogle Scholar
  102. Zheng, Y. F., 2009. Fluid Regime in Continental Subduction Zones: Petrological Insights from Ultrahigh-Pressure Metamorphic Rocks. Journal of the Geological Society, 166(4): 763–782.  https://doi.org/10.1144/0016-76492008-016r CrossRefGoogle Scholar
  103. Zheng, Y. F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 328: 5–48.  https://doi.org/10.1016/j.chemgeo.2012.02.005 CrossRefGoogle Scholar
  104. Zheng, Y. F., Chen, R. X., Xu, Z., et al., 2016. The Transport of Water in Subduction Zones. Science China Earth Sciences, 59(4): 651–682.  https://doi.org/10.1007/s11430-015-5258-4 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Earth Sciences, China University of GeosciencesWuhanChina
  2. 2.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhanChina

Personalised recommendations