Advertisement

Journal of Earth Science

, Volume 30, Issue 3, pp 525–534 | Cite as

Petrogenesis and Tectonic Implications of the Paiku Leucogranites, Northern Himalaya

  • Zhengbin Gou
  • Xin DongEmail author
  • Baodi Wang
Special Issue on Ophiolite, Orogenic Magmatism and Metamorphism Dedicated to IGCP 649: Diamonds and Recycled Mantle
  • 11 Downloads

Abstract

The Himalayan leucogranites provide insights into the partial melting behavior of relatively deeper crustal rocks and tectono-magmatic history of the Himalayan Orogen. The Paiku leucogranites of northern Himalaya can be subdivided into two-mica leucogranite (TML), garnet-bearing leucogranite (GL), cordierite-bearing leucogranite (CL), and tourmaline-bearing leucogranite (TL). All of them are high-K, peraluminous, calc-alkalic to alkali-calcic rocks. They are enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE), and show pronounced negative anomalies of Sr, Ba, K and Ti, but positive anomalies of Nb and Rb. LA-ICP-MS U-Pb zircon dating of one TML, one GL and two CL samples yielded variable 206Pb/238U ages ranging from 23.6 to 16.1 Ma, indicating the Paiku leucogranites underwent a low degree of partial melting process. Combining with previous studies, we suggest the Paiku leucogranites were derived from partial melting of metasedimentary rocks of the Higher Himalayan Sequence (HHS). The GL and TL mainly resulted from the muscovite-dehydration melting, whereas the TML and CL were mainly derived from the biotite-dehydration melting. Finally, it is concluded that the Paiku leucogranites were probably formed during the subduction of the Indian crust.

Key Words

Paiku leucogranites petrochemistry U-Pb geochronology dehydration melting tectonic implications northern Himalaya 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 41872070, 41802071, 41773026 and 41303028), and the China Geological Survey (No. DD20190053). We thank Zuolin Tian, Wangchao Li and Lei Tang for sample collecting. We thank two anonymous reviewers for constructive and critical reviews that helped to improve the manuscript significantly. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1219-8.

Supplementary material

12583_2019_1219_MOESM1_ESM.xlsx (21 kb)
Supplementary material, approximately 21.2 KB.

References Cited

  1. Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59–79.  https://doi.org/10.1016/s0009-2541(02)00195-x CrossRefGoogle Scholar
  2. Aikman, A. B., Harrison, T. M., Hermann, J., 2012. Age and Thermal History of Eo- and Neohimalayan Granitoids, Eastern Himalaya. Journal of Asian Earth Sciences, 51: 85–97.  https://doi.org/10.1016/j.jseaes.2012.01.011 CrossRefGoogle Scholar
  3. Aoya, M., Wallis, S. R., Terada, K., et al., 2005. North-South Extension in the Tibetan Crust Triggered by Granite Emplacement. Geology, 33(11): 853–856.  https://doi.org/10.1130/g21806.1 CrossRefGoogle Scholar
  4. Booth, A. L., Zeitler, P., Kidd, W., et al., 2004. U-Pb Zircon Constraints on the Tectonic Evolution of Southeastern Tibet, Namche Barwa Area. American Journal of Science, 304(10): 889–929.  https://doi.org/10.2475/ajs.304.10.889 CrossRefGoogle Scholar
  5. Braun, I., Raith, M., Kumar, G. R. R., 1996. Dehydration-Melting Phenomena in Leptynitic Gneisses and the Generation of Leucogranites: A Case Study from the Kerala Khondalite Belt, Southern India. Journal of Petrology, 37(6): 1285–1305.  https://doi.org/10.1093/petrology/37.6.1285 CrossRefGoogle Scholar
  6. Burchfiel, B. C., Royden, L. H., 1985. North-South Extension within the Convergent Himalayan Region. Geology, 13(10): 679–682.  https://doi.org/10.1130/0091-7613(1985)13679:newtch2.0.co;2 CrossRefGoogle Scholar
  7. Clemens, J. D., Vielzeuf, D., 1987. Constraints on Melting and Magma Production in the Crust. Earth and Planetary Science Letters, 86(2/3/4): 287–306.  https://doi.org/10.1016/0012-821x(87)90227-5 CrossRefGoogle Scholar
  8. Clemens, J. D., Stevens, G., 2015. Comment on ‘Water-Fluxed Melting of the Continental Crust: A Review’ by R. F. Weinberg and P. Hasalová. Lithos, 234/235: 100–101.  https://doi.org/10.1016/j.lithos.2015.06.032 Google Scholar
  9. Deniel, C., Vidal, P., Fernandez, A., et al., 1987. Isotopic Study of the Ma-naslu Granite (Himalaya, Nepal): Inferences on the Age and Source of Himalayan Leucogranites. Contributions to Mineralogy and Petrology, 96(1): 78–92.  https://doi.org/10.1007/bf00375529 CrossRefGoogle Scholar
  10. Ding, L., Kapp, P., Wan, X. Q., 2005. Paleocene-Eocene Record of Ophio-lite Obduction and Initial India-Asia Collision, South Central Tibet. Tectonics, 24(3): 1–18.  https://doi.org/10.1029/2004tc001729 CrossRefGoogle Scholar
  11. Edwards, M. A., Harrison, T. M., 1997. When did the Roof Collapse? Late Miocene North-South Extension in the High Himalaya Revealed by Th-Pb Mon-azite Dating of the Khula Kangri Granite. Geology, 25(6): 543–546.  https://doi.org/10.1130/0091-7613(1997)0250543:wdtrcl2.3.co;2 CrossRefGoogle Scholar
  12. Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033–2048.  https://doi.org/10.1093/petrology/42.11.2033 CrossRefGoogle Scholar
  13. Gao, L. E., Zeng, L. S., 2014. Fluxed Melting of Metapelite and the Formation of Miocene High-CaO Two-Mica Granites in the Malashan Gneiss Dome, Southern Tibet. Geochimica et Cosmochimica Acta, 130: 136–155.  https://doi.org/10.1016/j.gca.2014.01.003 CrossRefGoogle Scholar
  14. Gao, L. E., Zeng, L. S., Hou, K. J., et al., 2013. Episodic Crustal Anatexis and the Formation of Paiku Composite Leucogranitic Pluton in the Malashan Gneiss Dome, Southern Tibet. Chinese Science Bulletin, 58(28/29): 3546–3563.  https://doi.org/10.1007/s11434-013-5792-4 CrossRefGoogle Scholar
  15. Gao, L. E., Zeng, L. S., Xie, K. J., 2011. Eocene High Grade Metamorphism and Crustal Anatexis in the North Himalaya Gneiss Domes, Southern Tibet. Chinese Science Bulletin, 57(36): 3078–3090 (in Chinese)Google Scholar
  16. Gou, Z. B., Zhang, Z. M., Dong, X., et al., 2016. Petrogenesis and Tectonic Implications of the Yadong Leucogranites, Southern Himalaya. Lithos, 256/257: 300–310.  https://doi.org/10.1016/j.lithos.2016.04.009 Google Scholar
  17. Groppo, C., Rubatto, D., Rolfo, F., et al., 2010. Early Oligocene Partial Melting in the Main Central Thrust Zone (Arun Valley, Eastern Nepal Himalaya). Lithos, 118(3/4: 287–301.  https://doi.org/10.1016/j.lithos.2010.05.003 CrossRefGoogle Scholar
  18. Groppo, C., Rolfo, F., Indares, A., 2012. Partial Melting in the Higher Himalayan Crystallines of Eastern Nepal: The Effect of Decompression and Implications for the ‘Channel Flow’ Model. Journal of Petrology, 53(5): 1057–1088.  https://doi.org/10.1093/petrology/egs009 CrossRefGoogle Scholar
  19. Guillot, S., Le Fort, P., Pêcher, A., et al., 1995. Contact Metamorphism and Depth of Emplacement of the Manaslu Granite (Central Nepal). Implications for Himalayan Orogenesis. Tectonophysics, 241(1/2): 99–119.  https://doi.org/10.1016/0040-1951(94)00144-x CrossRefGoogle Scholar
  20. Guillot, S., Le Fort, P., 1995. Geochemical Constraints on the Bimodal Origin of High Himalayan Leucogranites. Lithos, 35(3/4: 221–234.  https://doi.org/10.1016/0024-4937(94)00052-4 CrossRefGoogle Scholar
  21. Guilmette, C., Indares, A., Hébert, R., 2011. High-Pressure Anatectic Paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis: Textural Evidence for Partial Melting, Phase Equilibria Modeling and Tectonic Implications. Lithos, 124(1/2): 66–81.  https://doi.org/10.1016/j.lithos.2010.09.003 CrossRefGoogle Scholar
  22. Guo, Z. F., Wilson, M., 2012. The Himalayan Leucogranites: Constraints on the Nature of Their Crustal Source Region and Geodynamic Setting. Gondwana Research, 22(2): 360–376.  https://doi.org/10.1016/j.gr.2011.07.027 CrossRefGoogle Scholar
  23. Harris, N., Inger, S., 1992. Trace Element Modelling of Pelite-Derived Granites. Contributions to Mineralogy and Petrology, 110(1): 46–56.  https://doi.org/10.1007/bf00310881 CrossRefGoogle Scholar
  24. Harris, N., Massey, J., Inger, S., 1993. The Role of Fluids in the Formation of High Himalayan Leucogranites. Geological Society, London, Special Publications, 74(1): 391–400.  https://doi.org/10.1144/gsl.sp.1993.074.01.26 CrossRefGoogle Scholar
  25. Harris, N., Massey, J., 1994. Decompression and Anatexis of Himalayan Metape-lites. Tectonics, 13(6): 1537–1546.  https://doi.org/10.1029/94tc01611 CrossRefGoogle Scholar
  26. Harris, N., Caddick, M., Kosler, J., et al., 2004. The Pressure-Temperature-Time Path of Migmatites from the Sikkim Himalaya. Journal of Metamorphic Geology, 22(3): 249–264.  https://doi.org/10.1111/j.1525-1314.2004.00511.x CrossRefGoogle Scholar
  27. Harrison, M. T., Grove, M., McKeegan, K. D., et al., 1999. Origin and Episodic Emplacement of the Manaslu Intrusive Complex, Central Himalaya. Journal of Petrology, 40(1): 3–19.  https://doi.org/10.1093/petroj/40.1.3 CrossRefGoogle Scholar
  28. Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62.  https://doi.org/10.2113/0530027 CrossRefGoogle Scholar
  29. Hou, Z. Q., Zheng, Y. C., Zeng, L. S., et al., 2012. Eocene-Oligocene Granitoids in Southern Tibet: Constraints on Crustal Anatexis and Tectonic Evolution of the Himalayan Orogen. Earth and Planetary Science Letters, 349/350: 38–52.  https://doi.org/10.1016/j.epsl.2012.06.030 CrossRefGoogle Scholar
  30. Huang, C. M., Zhao, Z. D., Li, G. M., et al., 2017. Leucogranites in Lhozag, Southern Tibet: Implications for the Tectonic Evolution of the Eastern Himalaya. Lithos, 294/295: 246–262.  https://doi.org/10.1016/j.lithos.2017.09.014 Google Scholar
  31. Icenhower, J., London, D., 1995. An Experimental Study of Element Partitioning among Biotite, Muscovite, and Coexisting Peraluminous Silicic Melt at 200 MPa (H2O). American Mineralogist, 80(11/12): 1229–1251.  https://doi.org/10.2138/am-1995-11-1213 CrossRefGoogle Scholar
  32. Imayama, T., Suzuki, K., 2013. Carboniferous Inherited Grain and Age Zoning of Monazite and Xenotime from Leucogranites in Far-Eastern Nepal: Constraints from Electron Probe Microanalysis. American Mineralogist, 98(8/9): 1393–1406.  https://doi.org/10.2138/am.2013.4267 CrossRefGoogle Scholar
  33. Inger, S., Harris, N., 1993. Geochemical Constraints on Leucogranite Mag-matism in the Langtang Valley, Nepal Himalaya. Journal of Petrology, 34(2): 345–368.  https://doi.org/10.1093/petrology/34.2.345 CrossRefGoogle Scholar
  34. King, J., Harris, N., Argles, T., et al., 2011. Contribution of Crustal Anatexis to the Tectonic Evolution of Indian Crust beneath Southern Tibet. Geological Society of America Bulletin, 123(1/2): 218–239.  https://doi.org/10.1130/b30085.1 CrossRefGoogle Scholar
  35. Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546.  https://doi.org/10.1007/s11434-010-3052-4 CrossRefGoogle Scholar
  36. Liu, Z. C., Wu, F. Y., Ji, W. Q., et al., 2014. Petrogenesis of the Ramba Leu-cogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model. Lithos, 208/209: 118–136.  https://doi.org/10.1016/j.lithos.2014.08.022 Google Scholar
  37. Ludwig, K. R., 2003. Isoplot/Ex Version 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, Berkeley. 1–73Google Scholar
  38. Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643.  https://doi.org/10.1130/0016-7606(1989)1010635:tdog2.3.co;2 CrossRefGoogle Scholar
  39. Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224.  https://doi.org/10.1016/0012-8252(94)90029-9 CrossRefGoogle Scholar
  40. Patino Douce, A. E., Harris, N., 1998. Experimental Constraints on Himalayan Anatexis. Journal of Petrology, 39(4): 689–710.  https://doi.org/10.1093/petroj/39.4.689 CrossRefGoogle Scholar
  41. Patino Douce, A. E., Humphreys, E. D., Johnston, A. D., 1990. Anatexis and Metamorphism in Tectonically Thickened Continental Crust Exemplified by the Sevier Hinterland, Western North America. Earth and Planetary Science Letters, 97(3/4): 290–315.  https://doi.org/10.1016/0012-821x(90)90048-3 CrossRefGoogle Scholar
  42. Paul, A., Jung, S., Romer, R. L., et al., 2014. Petrogenesis of Synorogenic High-Temperature Leucogranites (Damara Orogen, Namibia): Constraints from U-Pb Monazite Ages and Nd, Sr and Pb Isotopes. Gondwana Research, 25(4): 1614–1626.  https://doi.org/10.1016/j.gr.2013.06.008 CrossRefGoogle Scholar
  43. Rubatto, D., Chakraborty, S., Dasgupta, S., 2013. Timescales of Crustal Melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) Inferred from Trace Element-Constrained Monazite and Zircon Chronology. Contributions to Mineralogy and Petrology, 165(2): 349–372.  https://doi.org/10.1007/s00410-012-0812-y CrossRefGoogle Scholar
  44. Scaillet, B., France-Lanord, C., Le Fort, P., 1990. Badrinath-Gangotri Plu-tons (Garhwal, India): Petrological and Geochemical Evidence for Fractionation Processes in a High Himalayan Leucogranite. Journal of Volcanology and Geothermal Research, 44(1/2): 163–188.  https://doi.org/10.1016/0377-0273(90)90017-a CrossRefGoogle Scholar
  45. Schärer, U., 1984. The Effect of Initial 230Th Disequilibrium on Young U-Pb Ages: The Makalu Case, Himalaya. Earth and Planetary Science Letters, 67(2): 191–204.  https://doi.org/10.1016/0012-821x(84)90114-6 CrossRefGoogle Scholar
  46. Searle, M. P., Godin, L., 2003. The South Tibetan Detachment and the Ma-naslu Leucogranite: A Structural Reinterpretation and Restoration of the Annapurna-Manaslu Himalaya, Nepal. The Journal of Geology, 111(5): 505–523.  https://doi.org/10.1086/376763 CrossRefGoogle Scholar
  47. Searle, M. P., Szulc, A. G., 2005. Channel Flow and Ductile Extrusion of the High Himalayan Slab—The Kangchenjunga-Darjeeling Profile, Sikkim Himalaya. Journal of Asian Earth Sciences, 25(1): 173–185.  https://doi.org/10.1016/j.jseaes.2004.03.004 CrossRefGoogle Scholar
  48. Searle, M. P., Cottle, J. M., Streule, M. J., et al., 2009. Crustal Melt Granites and Migmatites along the Himalaya: Melt Source, Segregation, Transport and Granite Emplacement Mechanisms. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100(1/2): 219–233.  https://doi.org/10.1017/s175569100901617x CrossRefGoogle Scholar
  49. Sorcar, N., Hoppe, U., Dasgupta, S., et al., 2014. High-Temperature Cooling Histories of Migmatites from the High Himalayan Crystallines in Sik-kim, India: Rapid Cooling Unrelated to Exhumation?. Contributions to Mineralogy and Petrology, 167(2): 1–34.  https://doi.org/10.1007/s00410-013-0957-3 CrossRefGoogle Scholar
  50. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345.  https://doi.org/10.1144/gsl.sp.1989.042.01.19 CrossRefGoogle Scholar
  51. Thompson, A. B., Connolly, J. A. D., 1995. Melting of the Continental Crust: Some Thermal and Petrological Constraints on Anatexis in Continental Collision Zones and other Tectonic Settings. Journal of Geophysical Research: Solid Earth, 100(B8): 15565–15579.  https://doi.org/10.1029/95jb00191 CrossRefGoogle Scholar
  52. Vielzeuf, D., Holloway, J. R., 1988. Experimental Determination of the Fluid-Absent Melting Relations in the Pelitic System. Contributions to Mineralogy and Petrology, 98(3): 257–276.  https://doi.org/10.1007/bf00375178 CrossRefGoogle Scholar
  53. Vielzeuf, D., Montel, J. M., 1994. Partial Melting of Metagreywackes. Part I. Fluid-Absent Experiments and Phase Relationships. Contributions to Mineralogy and Petrology, 117(4): 375–393.  https://doi.org/10.1007/bf00307272 CrossRefGoogle Scholar
  54. Visonà, D., Lombardo, B., 2002. Two-Mica and Tourmaline Leucogranites from the Everest-Makalu Region (Nepal-Tibet). Himalayan Leu-cogranite Genesis by Isobaric Heating?. Lithos,62(3/4): 125–150.  https://doi.org/10.1016/s0024-4937(02)00112-3 CrossRefGoogle Scholar
  55. Wang, L. X., Ma, C. Q., Zhang, C., et al., 2014. Genesis of Leucogranite by Prolonged Fractional Crystallization: A Case Study of the Mufushan Complex, South China. Lithos, 206/207: 147–163.  https://doi.org/10.1016/j.lithos.2014.07.026 Google Scholar
  56. Wang, X. X., Zhang, J. J., Wang, J. M., 2016. Geochronology and Formation Mechanism of the Paiku Granite in Northern Himalaya, and Its Tectonic Implications. Earth Science, 41: 982–998 (in Chinese with English Abstract)Google Scholar
  57. Wu, F. Y., Liu, Z. C., Liu, X. C., et al. 2015. Himalayan Leucogranites: Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31: 1–36 (in Chinese with English Abstract)Google Scholar
  58. Yin, A., 2006. Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by Along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation. Earth-Science Reviews, 76(1/2): 1–131.  https://doi.org/10.1016/j.earscirev.2005.05.004 CrossRefGoogle Scholar
  59. Zeng, L. S., Gao, L. E., Xie, K. J., et al., 2011. Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes: Melting Thickened Lower Continental Crust. Earth and Planetary Science Letters, 303(3/4): 251–266.  https://doi.org/10.1016/j.epsl.2011.01.005 CrossRefGoogle Scholar
  60. Zeng, L. S., Gao, L. E., Tang, S. H., et al., 2014. Eocene Magmatism in the Tethyan Himalaya, Southern Tibet. Geological Society, London, Special Publications, 412(1): 287–316.  https://doi.org/10.1144/sp412.8 CrossRefGoogle Scholar
  61. Zhang, H. F., Harris, N., Parrish, R., et al., 2004. U-Pb Ages of Kude and Sajia Leucogranites in Sajia Dome from North Himalaya and Their Geological Implications. Chinese Science Bulletin, 49(19): 2017.  https://doi.org/10.1360/04wd0198 Google Scholar
  62. Zhang, Z. M., Dong, X., Santosh, M., et al., 2014. Metamorphism and Tectonic Evolution of the Lhasa Terrane, Central Tibet. Gondwana Research, 25(1): 170–189.  https://doi.org/10.1016/j.gr.2012.08.024 CrossRefGoogle Scholar
  63. Zhang, Z. M., Xiang, H., Dong, X., et al., 2015. Long-Lived High-Temperature Granulite-Facies Metamorphism in the Eastern Himalayan Orogen, South Tibet. Lithos, 212-215: 1–15.  https://doi.org/10.1016/j.lithos.2014.10.009 Google Scholar
  64. Zhang, Z. M., Xiang, H., Dong, X., et al., 2017. Oligocene HP Metamor-phism and Anatexis of the Higher Himalayan Crystalline Sequence in Yadong Region, East-Central Himalaya. Gondwana Research, 41: 173–187.  https://doi.org/10.1016/j.gr.2015.03.002 CrossRefGoogle Scholar
  65. Zhang, Z. M., Kang, D. Y., Ding, H. X., et al., 2018a. Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites. Earth Science, 43(1): 82–98 (in Chinese with English Abstract)CrossRefGoogle Scholar
  66. Zhang, Z. M., Ding, H. X., Dong, X., et al., 2018b. High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen. Journal of Earth Science, 29(5): 1010–1025.  https://doi.org/10.1007/s12583-018-0852-y CrossRefGoogle Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019 2019

Authors and Affiliations

  1. 1.Chengdu CenterChina Geological SurveyChengduChina
  2. 2.Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of GeologyChinese Academy of Geological SciencesBeijingChina

Personalised recommendations