Advertisement

Journal of Earth Science

, Volume 30, Issue 5, pp 938–951 | Cite as

Nd Isotopic and Model Age Study of the Shandong Province, North China Craton: Implications for Correlation with South Korea

  • Feifei Liu
  • Yaoqi ZhouEmail author
Petrology, Mineralogy and Geochemistry
  • 17 Downloads

Abstract

The geological units in Shandong Province, North China are important parts of the North China Craton and offer important insights into their crustal evolutionary history. This work compiled 611 sets of Nd isotopic data of Archean-Mesozoic rocks from Shandong including the Luxi, Jiaobei, and Sulu terranes, which provided important constraints for crustal growth and reactivation. Nd-depleted mantle model ages (TDM) of Archean rocks with positive εNd(t) values showed that ca. 2.9 and 2.8-2.7 Ga were the most important periods of crustal growth in the Jiaobei and Luxi terranes, respectively, while the period of ca. 2.6-2.5 Ga in the Jiaobei terrane likely indicated a coherent event of crustal growth and reworking. During the Proterozoic, multi-stage rifting and collisional orogenic events possibly led to the reworking of Archean crust in the source region. The Nd isotopic data of the Paleoproterozoic and Neoproterozoic rocks from Sulu indicated significant reworking of older crust with juvenile magmatic input. Crustal reactivation occurred during the Mesozoic. The younger TDM ages of the Mesozoic rocks with low negative εNd(t) values indicated that a juvenile crustal/mantle component was added to the ancient basement. The reactivation reflected significant crust-mantle interaction via the mechanism of crustal subduction and mantle-derived magma un-derplating, or possibly asthenospheric upwelling. Our work also attempted to establish the crustal correlation between Shandong and Korea (including the Gyeonggi massif, Ogcheon belt, and Yeongnam massif). The TDM age distribution provided evidence favoring the affinity relationship between the Gyeonggi massif and Ogcheon belt of South Korea and the Jiaobei and Sulu terranes of Shandong, while the Yeongnam massif was more correlated with the South China Block.

Key words

Nd model age crustal growth crust reactivation Shandong geochemistry Korea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by a scientific and technological innovation project of Shandong Province (No. 2017CXGC1608). The author Feifei Liu acknowledges the China Scholarship Council (CSC) for a doctoral fellowship. The authors would like to thank Sung-Tack Kwon (Yongsei University, Seoul, Korea) for assistance with the Sm-Nd isotopic analysis. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1213-1.

Supplementary material

12583_2019_1213_MOESM1_ESM.xlsx (90 kb)
Published whole rock Sm-Nd isotope data for the igneous and metamorphic rocks in the Shandong Province, North China Craton

References Cited

  1. Ames, L., Zhou, G. Z., Xiong, B. C., 1996. Geochronology and Isotopic Character of Ultrahigh-Pressure Metamorphism with Implications for Collision of the Sino-Korean and Yangtze Cratons, Central China. Tectonics, 15(2): 472–489.  https://doi.org/10.1029/95tc02552 Google Scholar
  2. Arndt, N. T., Goldstein, S. L., 1987. Use and Abuse of Crust-Formation Ages. Geology, 15(10): 893.  https://doi.org/10.1130/0091-7613(1987)15<893:uaaoca>2.0.co;2 Google Scholar
  3. Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1/2): 243–258.  https://doi.org/10.1016/s0012-821x(97)00040-x Google Scholar
  4. Cai, Y. C., Fan, H. R., Santosh, M., et al., 2015. Subduction-Related Metasomatism of the Lithospheric Mantle beneath the Southeastern North China Craton: Evidence from Mafic to Intermediate Dykes in the Northern Sulu Orogen. Tectonophysics, 1: 137–151.  https://doi.org/10.1016/j.tecto.2015.07.037 Google Scholar
  5. Chen, J. F., Jahn, B. M., 1998. Crustal Evolution of Southeastern China: Nd and Sr Isotopic Evidence. Tectonophysics, 284(1/2): 101–133.  https://doi.org/10.1016/s0040-1951(97)00186-8 Google Scholar
  6. Chen, Y. X., Gao, P., Zheng, Y. F., 2015. The Anatectic Effect on the Zircon Hf Isotope Composition of Migmatites and Associated Granites. Lithos, 1: 174–184.  https://doi.org/10.1016/j.lithos.2015.09.026 Google Scholar
  7. Cheng, S. B., Liu, Z. J., Wang, Q. F., et al., 2017. SHRIMP Zircon U-Pb Dating and Hf Isotope Analyses of the Muniushan Monzogranite, Guocheng, Jiaobei Terrane, China: Implications for the Tectonic Evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 1: 36–48.  https://doi.org/10.1016/j.precamres.2017.09.002 Google Scholar
  8. Cheong, C. S., Kim, N., Kim, J., et al., 2014. Petrogenesis of Late Permian Sodic Metagranitoids in Southeastern Korea: SHRIMP Zircon Geochro-nology and Elemental and Nd-Hf Isotope Geochemistry. Journal of Asian Earth Sciences, 1: 228–242.  https://doi.org/10.1016/j.jse-aes.2014.06.005 Google Scholar
  9. Cheong, C. S., Kwon, S. T., Park, K. H., 2000. Pb and Nd Isotopic Constraints on Paleoproterozoic Crustal Evolution of the Northeastern Yeongnam Massif, South Korea. Precambrian Research, 102(3/4): 207–220.  https://doi.org/10.1016/s0301-9268(00)00066-8 Google Scholar
  10. Cho, H. M., Baag, C. E., Lee, J. M., et al., 2006. Crustal Velocity Structure across the Southern Korean Peninsula from Seismic Refraction Survey. Geophysical Research Letters, 33(6): 272–288.  https://doi.org/10.1029/2005gl025145 Google Scholar
  11. Cho, M., Kim, H., 2005. Metamorphic Evolution of the Ogcheon Belt, Korea: A Review and New Age Constraints. International Geology Review, 47(1): 41–57.  https://doi.org/10.2747/0020-6814.47.1.41 Google Scholar
  12. Cluzel, D., 1992. Ordovician Bimodal Magmatism in the Ogcheon Belt (South Korea): Intracontinental Rift-Related Volcanic Activity. Journal of Southeast Asian Earth Sciences, 7(2/3): 195–209.  https://doi.org/10.1016/0743-9547(92)90054-f Google Scholar
  13. Deng, J., Wang, C. M., Bagas, L., et al., 2018. Crustal Architecture and Metallogenesis in the South-Eastern North China Craton. Earth-Science Reviews, 1: 251–272.  https://doi.org/10.1016/j.earscirev.2018.05.001 Google Scholar
  14. Fan, J. T., Li, J. Y., 2000. Nd-Sr Isotopic Age Determination of Gneiss and Its Geological Significance, Donghai Region, North Jiangsu. Jiangsu Geology, 24(4): 193–199 (in Chinese with English Abstract)Google Scholar
  15. Gao, L., Liu, S. W., Sun, G. Z., et al., 2018. Petrogenesis of Late Neoarchean High-K Granitoids in the Western Shandong Terrane, North China Craton, and Their Implications for Crust-Mantle Interactions. Precambrian Research, 1: 138–161.  https://doi.org/10.1016/j.precamres.2018.07.006 Google Scholar
  16. Geng, Y. S., Du, L. L., Ren, L. D., 2012. Growth and Reworking of the Early Precambrian Continental Crust in the North China Craton: Constraints from Zircon Hf Isotopes. Gondwana Research, 21(2/3): 517–529.  https://doi.org/10.1016/j.gr.2011.07.006 Google Scholar
  17. Goss, S. C., Wilde, S. A., Wu, F. Y., et al., 2010. The Age, Isotopic Signature and Significance of the Youngest Mesozoic Granitoids in the Jiaodong Terrane, Shandong Province, North China Craton. Lithos, 120(3/4): 309–326.  https://doi.org/10.1016/j.lithos.2010.08.019 Google Scholar
  18. Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237–269.  https://doi.org/10.1016/s0024-4937(02)00082-8 Google Scholar
  19. Guo, F., Fan, W. M., Li, C. W., et al., 2014. Hf-Nd-O Isotopic Evidence for Melting of Recycled Sediments beneath the Sulu Orogen, North China. Chemical Geology, 1: 243–258.  https://doi.org/10.1016/j.chemgeo.2014.04.028 Google Scholar
  20. Guo, F., Fan, W. M., Wang, Y. J., et al., 2003. Geochemistry of Late Meso-zoic Mafic Magmatism in West Shandong Province, Eastern China: Characterizing the Lost Lithospheric Mantle beneath the North China Block. Geochemical Journal, 37(1): 63–77.  https://doi.org/10.2343/ge-ochemj.37.63 Google Scholar
  21. He, Z. Y., Xu, X. S., Niu, Y. L., 2010. Petrogenesis and Tectonic Significance of a Mesozoic Granite-Syenite-Gabbro Association from Inland South China. Lithos, 119(3/4): 621–641.  https://doi.org/10.1016/j.li-thos.2010.08.016 Google Scholar
  22. Hu, B., Zhai, M. G., Li, T. S., et al., 2012. Mesoproterozoic Magmatic Events in the Eastern North China Craton and Their Tectonic Implications: Ge-ochronological Evidence from Detrital Zircons in the Shandong Peninsula and North Korea. Gondwana Research, 22(3/4): 828–842.  https://doi.org/10.1016/j.gr.2012.03.005 Google Scholar
  23. Hu, B., Zhai, M. G., Peng, P., et al., 2013. Late Paleoproterozoic to Neopro-terozoic Geological Events of the North China Craton: Evidences from LA-ICP-MS U-Pb Geochronology of Detrital Zircons from the Cambrian and Jurassic Sedimentary Rocks in Western Hills of Beijing. Acta Petrologica Sinica, 29(7): 2508–2536 (in Chinese with English Abstract)Google Scholar
  24. Huang, S. F., Wang, W., Zhao, J. H., et al., 2018. Petrogenesis and Geody-namic Significance of the 850?Ma Dongling A-Type Granites in South China. Lithos, 318–319: 176–193.  https://doi.org/10.1016/j.li-thos.2018.08.016 Google Scholar
  25. Huang, T., Yang, L. Q., Liu, X. D., et al., 2014. Crustal Evolution of the Jiaobei Terrane: Evidence from U-Pb Ages Trace Element Compositions and Hf Isotopes of Inherited Zircons of the Linglong Biotite Granite. Acta Petrologica Sinica, 30(9): 2574–2594 (in Chinese)Google Scholar
  26. Huang, X. L., He, P. L., Wang, X., et al., 2016. Lateral Variation in Oxygen Fugacity and Halogen Contents in Early Cretaceous Magmas in Jiao-dong Area, East China: Implication for Triggers of the Destruction of the North China Craton. Lithos, 248–251: 478–492.  https://doi.org/10.1016/j.lithos.2016.02.008 Google Scholar
  27. Jahn, B. M., Auvray, B., Shen, Q. H., et al., 1988. Archean Crustal Evolution in China: The Taishan Complex, and Evidence for Juvenile Crustal Addition from Long-Term Depleted Mantle. Precambrian Research, 38(4): 381–403.  https://doi.org/10.1016/0301-9268(88)90035-6 Google Scholar
  28. Jahn, B. M., Liu, D., Wan, Y., et al., 2008. Archean Crustal Evolution of the Jiaodong Peninsula, China, as Revealed by Zircon SHRIMP Geochro-nology, Elemental and Nd-Isotope Geochemistry. American Journal of Science, 308(3): 232–269.  https://doi.org/10.2475/03.2008.03 Google Scholar
  29. Jia, X. H., Wang, X. D., Yang, W. Q., et al., 2014. The Early Jurassic A-Type Granites in Northern Guangxi, China: Petrogenesis and Implication. Earth Science, 39(1): 21–36 (in Chinese with English Abstract)Google Scholar
  30. Jiang, N., Guo, J. H., Fan, W. B., et al., 2016. Archean TTGs and Sanukitoids from the Jiaobei Terrain, North China Craton: Insights into Crustal Growth and Mantle Metasomatism. Precambrian Research, 1: 656–672.  https://doi.org/10.1016/j.precamres.2016.06.019 Google Scholar
  31. Jo, H. J., Cheong, A. C. S., Yi, K., et al., 2018. Juxtaposition of Allochthonous Terranes in the Central Korean Peninsula: Evidence from Zircon U-Pb Ages and O-Hf Isotopes in Jurassic Granitoids. Chemical Geology, 1: 136–147.  https://doi.org/10.1016/j.chemgeo.2017.10.006 Google Scholar
  32. Kim, C. B., Chang, H. W., Turek, A., 2003. U-Pb Zircon Ages and Sr-Nd-Pb Isotopic Compositions for Permian–Jurassic Plutons in the Ogcheon Belt and Ryeongnam Massif, Korea: Tectonic Implications and Correlation with the China Qinling-Dabie Belt and the Japan Hida Belt. Island Arc, 12(4): 366–382.  https://doi.org/10.1046/j.1440-1738.2003.00404.x Google Scholar
  33. Kim, H., Cheong, C. S., Cho, M., 2007. The Effect of Allanite Inclusions on U-Pb Step-Leaching Ages and Sm-Nd Isotope Systematics of Garnet from the Ogcheon Metamorphic Belt, South Korea. Chemical Geology, 236(1/2): 27–41.  https://doi.org/10.1016/j.chemgeo.2006.08.014 Google Scholar
  34. Kim, N., Cheong, C. S., Yi, K., et al., 2014. Zircon U-Pb Geochronological and Hf Isotopic Constraints on the Precambrian Crustal Evolution of the North-Eastern Yeongnam Massif, Korea. Precambrian Research, 1: 1–21.  https://doi.org/10.1016/j.precamres.2013.12.008 Google Scholar
  35. Kong, Q. B., 2009. Zircon U-Pb Dating, REE and Lu-Hf Isotopic Characteristics of Paleoproterozoic Orthogneiss in Sulu UHP Terrane, Eastern China. Geological Bulletin of China, 28(1): 51–62 (in Chinese with English Abstract)Google Scholar
  36. Kwon, Y., 2003. Granulite-Facies Metamorphism in the Punggi Area, Northeastern Yeongnam Massif, Korea and Its Tectonic Implications for East Asia. Precambrian Research, 122(1–4): 253–273.  https://doi.org/10.1016/s0301-9268(02)00214-0 Google Scholar
  37. Lan, C. Y., Lee, T., Zhou, X. H., et al., 1995. Nd Isotopic Study of Precam-brian Basement of South Korea: Evidence for Early Archean Crust?. Geology, 23(3): 249–252.  https://doi.org/10.1130/0091-7613(1995)023<0249:nisopb>2.3.co;2 Google Scholar
  38. Lan, T. G., Fan, H. R., Hu, F. F., et al., 2011a. Multiple Crust-Mantle Interactions for the Destruction of the North China Craton: Geochemical and Sr-Nd-Pb-Hf Isotopic Evidence from the Longbaoshan Alkaline Complex. Li-thos, 122(1/2): 87–106.  https://doi.org/10.1016/j.lithos.2010.12.001 Google Scholar
  39. Lan, T. G., Fan, H. R., Santosh, M., et al., 2011b. Geochemistry and Sr-Nd-Pb-Hf Isotopes of the Mesozoic Dadian Alkaline Intrusive Complex in the Sulu Orogenic Belt, Eastern China: Implications for Crust-Mantle Interaction. Chemical Geology, 285(1–4): 97–114.  https://doi.org/10.1016/j.chemgeo.2011.03.013 Google Scholar
  40. Lan, T. G., Fan, H. R., Santosh, M., et al., 2013. Crust-Mantle Interaction beneath the Luxi Block, Eastern North China Craton: Evidence from Coexisting Mantle- And Crust-Derived Enclaves in a Quartz Monzonite Pluton. Lithos, 1: 1–16.  https://doi.org/10.1016/j.lithos.2013.05.017 Google Scholar
  41. Lee, B. C., Park, J. H., Oh, C. W., et al., 2017. Metamorphic and Magmatic Evolution of the Paleoproterozoic Gneisses in the Sancheong Area, Yeongnam Massif, South Korea, and Their Implications to the Tectonics in the Northeast Asia. Precambrian Research, 1: 439–461.  https://doi.org/10.1016/j.precamres.2017.06.001 Google Scholar
  42. Lee, K. S., Chang, H. W., Park, K. H., 1998. Neoproterozoic Bimodal Vol-canism in the Central Ogcheon Belt, Korea: Age and Tectonic Implication. Precambrian Research, 89(1/2): 47–57.  https://doi.org/10.1016/s0301-9268(97)00077-6 Google Scholar
  43. Lee, S. R., Cho, M., Hwang, J. H., et al., 2003. Crustal Evolution of the Gyeonggi Massif, South Korea: Nd Isotopic Evidence and Implications for Continental Growths of East Asia. Precambrian Research, 121(1/2): 25–34.  https://doi.org/10.1016/s0301-9268(02)00196-1 Google Scholar
  44. Lee, S. R., Cho, M., Yi, K., et al., 2000. Early Proterozoic Granulites in Central Korea: Tectonic Correlation with Chinese Cratons. The Journal of Geology, 108(6): 729–738.  https://doi.org/10.1086/317951 Google Scholar
  45. Lee, Y. I., Choi, T., Lim, H. S., 2016. Reply to the Comment on Lee et al., “Detrital Zircon Geochronology and Nd Isotope Geochemistry of the Basal Succession of the Taebaeksan Basin, South Korea: Implications for the Gondwana Linkage of the Sino-Korean (North China) Block during the Neoproterozoic–Early Cambrian” [Palaeogeography, Palaeocli-matology, Palaeoecology 441(2016): 770–786]. Palaeogeography, Pal-aeoclimatology, Palaeoecology, 1: 613–617.  https://doi.org/10.1016/j.palaeo.2016.07.039 Google Scholar
  46. Lee, Y., Cho, M., Yi, K., 2017. In-situ U-Pb and Lu-Hf Isotopic Studies of Zircons from the Sancheong-Hadong AMCG Suite, Yeongnam Massif, Korea: Implications for the Petrogenesis of ∼1.86 Ga Massif-Type An-orthosite. Journal of Asian Earth Sciences, 1: 629–646.  https://doi.org/10.1016/j.jseaes.2017.02.038 Google Scholar
  47. Li, H. K., Yang, Y. B., Geng, K., et al., 2013. Research Progress on Major Basic Geological Problems in Shandong Province. Acta Petrologica Sinica, 29(2): 594–606 (in Chinese with English Abstract)Google Scholar
  48. Li, Q. W., Zhao, J. H., Wang, W., 2018. Ca. 2.0?Ga Mafic Dikes in the Kongling Complex, South China: Implications for the Reconstruction of Columbia. Journal of Asian Earth Sciences, 1: 323–335.  https://doi.org/10.1016/j.jseaes.2018.09.022 Google Scholar
  49. Li, S. Z., Kusky, T. M., Zhao, G. C., et al., 2011. Thermochronological Constraints on Two-Stage Extrusion of HP/UHP Terranes in the Dabie-Sulu Orogen, East-Central China. Tectonophysics, 504(1–4): 25–42.  https://doi.org/10.1016/j.tecto.2011.01.017 Google Scholar
  50. Li, Z. Y., Li, Y. L., Wijbrans, J. R., et al., 2018. Metamorphic P-T Path Differences between the Two UHP Terranes of Sulu Orogen, Eastern China: Petrologic Comparison between Eclogites from Donghai and Rong-cheng. Journal of Earth Science, 29(5): 1151–1166.  https://doi.org/10.1007/s12583-018-0845-x Google Scholar
  51. Lin, J. Q., Tan, D. J., Jin, Y., 1996. 40Ar/39Ar ages of Mesozoic Igneous Rocks from West Shandong Province, China. Acta Petrologica et Mineralogica, 1: 213–220 (in Chinese)Google Scholar
  52. Liu, F. L., Liou, J. G., 2011. Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism: A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks. Journal of Asian Earth Sciences, 40(1): 1–39.  https://doi.org/10.1016/j.jseaes.2010.08.007 Google Scholar
  53. Liu, F., Liu, P., Wang, F., et al., 2014. U-Pb Dating of Zircons from Granitic Leucosomes in Migmatites of the Jiaobei Terrane, Southwestern Jiao-Liao-Ji Belt, North China Craton: Constraints on the Timing and Nature of Partial Melting. Precambrian Research, 1: 80–99.  https://doi.org/10.1016/j.precamres.2014.01.001 Google Scholar
  54. Liu, F., Zhang, J., Liu, C., 2017. Archean to Paleoproterozoic Evolution of the North China Craton: Preface. Precambrian Research, 1: 1–9.  https://doi.org/10.1016/j.precamres.2017.11.011 Google Scholar
  55. Liu, Q., Yu, J. H., Su, B., et al., 2011. Discovery of the 187 Ma Granite in Jincheng Area, Fujian Province: Constraint on Early Jurassic Tectonic Evolution of Southeastern China. Acta Petrologica Sinica, 27(12): 3575–3589 (in Chinese)Google Scholar
  56. Liu, S., Hu, R. Z., Gao, S., et al., 2008a. U-Pb Zircon Age, Geochemical and Sr-Nd-Pb-Hf Isotopic Constraints on Age and Origin of Alkaline Intrusions and Associated Mafic Dikes from Sulu Orogenic Belt, Eastern China. Lithos, 106(3/4): 365–379.  https://doi.org/10.1016/j.li-thos.2008.09.004 Google Scholar
  57. Liu, S., Hu, R. Z., Gao, S., et al., 2008b. Zircon U-Pb Geochronology and Major, Trace Elemental and Sr-Nd-Pb Isotopic Geochemistry of Mafic Dykes in Western Shandong Province, East China: Constrains on Their Petrogenesis and Geodynamic Significance. Chemical Geology, 255(3/4): 329–345.  https://doi.org/10.1016/j.chemgeo.2008.07.006 Google Scholar
  58. Liu, S., Hu, R. Z., Gao, S., et al., 2009a. Petrogenesis of Late Mesozoic Mafic Dykes in the Jiaodong Peninsula, Eastern North China Craton and Implications for the Foundering of Lower Crust. Lithos, 113(3/4): 621–639.  https://doi.org/10.1016/j.lithos.2009.06.035 Google Scholar
  59. Liu, S., Hu, R. Z., Gao, S., et al., 2009b. Zircon U-Pb Age, Geochemistry and Sr-Nd-Pb Isotopic Compositions of Adakitic Volcanic Rocks from Jiao-dong, Shandong Province, Eastern China: Constraints on Petrogenesis and Implications. Journal of Asian Earth Sciences, 35(5): 445–458.  https://doi.org/10.1016/j.jseaes.2009.02.008 Google Scholar
  60. Liu, X. F., Deng, J., Liang, Y. Y., et al., 2018. Petrogenesis of Early Cretaceous Intermediate-Felsic Dikes in the Jiaodong Peninsula, SouthEastern North China Craton: Constraints from Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotopes. Gondwana Research, 1: 69–93.  https://doi.org/10.1016/j.gr.2018.04.005 Google Scholar
  61. Lu, S. N., Li, H. K., Li, H. M., et al., 2003. U-Pb Isotopic Ages and Their Significance of Alkaline Granitein the Southern Margin of the North China Craton. Regional Geology of China, 22(12): 762–768 (in Chinese with English Abstract)Google Scholar
  62. Ma, C. Q., Ehlers, C., Xu, C. H., et al., 2000. The Roots of the Dabieshan Ultrahigh-Pressure Metamorphic Terrane: Constraints from Geochemistry and Nd-Sr Isotope Systematics. Precambrian Research, 102(3/4): 279–301.  https://doi.org/10.1016/s0301-9268(00)00069-3 Google Scholar
  63. Ma, L., Jiang, S. Y., Dai, B. Z., et al., 2013. Multiple Sources for the Origin of Late Jurassic Linglong Adakitic Granite in the Shandong Peninsula, Eastern China: Zircon U-Pb Geochronological, Geochemical and Sr-Nd-Hf Isotopic Evidence. Lithos, 162–163: 251–263.  https://doi.org/10.1016/j.lithos.2013.01.009 Google Scholar
  64. Meng, L. F., Li, Z. X., Chen, H. L., et al., 2015. Detrital Zircon U-Pb Geo-chronology, Hf Isotopes and Geochemistry Constraints on Crustal Growth and Mesozoic Tectonics of Southeastern China. Journal of Asian Earth Sciences, 1: 286–299.  https://doi.org/10.1016/j.jse-aes.2015.01.015 Google Scholar
  65. Meng, Y. K., Santosh, M., Li, R. H., et al., 2018. Petrogenesis and Tectonic Implications of Early Cretaceous Volcanic Rocks from Lingshan Island in the Sulu Orogenic Belt. Lithos, 312–313: 244–257.  https://doi.org/10.1016/j.lithos.2018.05.009 Google Scholar
  66. Qi, L., Xu, Y. J., Cawood, P. A., et al., 2018. Reconstructing Cryogenian to Ediacaran Successions and Paleogeography of the South China Block. Precambrian Research, 1: 452–467.  https://doi.org/10.1016/j.precamres.2018.07.003 Google Scholar
  67. Qiu, J., Wang, D., Zeng, J., et al., 1997. Study on Trace Element and Nd-Sr Isotopic Geochemistry of Mesozoic Potash-Rich Volcanic Rocks and Lamprophyres in Western Shandong Province. Geological Journal of China University, 1: 384–395 (in Chinese with English Abstract)Google Scholar
  68. Qiu, Y. M., Gao, S., McNaughton, N. J., et al., 2000. First Evidence of >3.2 Ga Continental Crust in the Yangtze Craton of South China and Its Implications for Archean Crustal Evolution and Phanerozoic Tectonics. Geology, 28(1): 11–14.  https://doi.org/10.1130/0091-7613(2000)028<0011:feogcc>2.3.co;2 Google Scholar
  69. Sagong, H., 2003. Paleoproterozoic Orogeny in South Korea: Evidence from Sm-Nd and Pb Step-Leaching Garnet Ages of Precambrian Basement Rocks. Precambrian Research, 122(1–4): 275–295.  https://doi.org/10.1016/s0301-9268(02)00215-2 Google Scholar
  70. Santosh, M., Hu, C. N., Kim, S. W., et al., 2018. Late Paleoproterozoic Ultrahigh-Temperature Metamorphism in the Korean Peninsula. Precambrian Research, 1: 111–125.  https://doi.org/10.1016/j.precamres.2018.02.010 Google Scholar
  71. Scherer, E., 2001. Calibration of the Lutetium-Hafnium Clock. Science, 293(5530): 683–687.  https://doi.org/10.1126/science.1061372 Google Scholar
  72. Shan, H. X., Zhai, M. G., Wang, F., et al., 2015. Zircon U-Pb Ages, Geochemistry, and Nd-Hf Isotopes of the TTG Gneisses from the Jiaobei Terrane: Implications for Neoarchean Crustal Evolution in the North China Craton. Journal of Asian Earth Sciences, 1: 61–74.  https://doi.org/10.1111/j.1525-1314.2009.00826.x Google Scholar
  73. Song, M. C., 2008. Tectonic Framework and Tectonic Evolution of the Shandong Provice: [Dissertation]. Chinese Academy of Geological Sciences, Beijing. 30–31 (in Chinese with English Abstract)Google Scholar
  74. Suzuki, K., Adachi, M., 1994. Middle Precambrian Detrital Monazite and Zircon from the Hida Gneiss on Oki-Dogo Island, Japan: Their Origin and Implications for the Correlation of Basement Gneiss of Southwest Japan and Korea. Tectonophysics, 235(3): 277–292.  https://doi.org/10.1016/0040-1951(94)90198-8 Google Scholar
  75. Tam, P. Y., Zhao, G. C., Liu, F. L., et al., 2011. Timing of Metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt: New SHRIMP U-Pb Zircon Dating of Granulites, Gneisses and Marbles of the Jiaobei Massif in the North China Craton. Gondwana Research, 19(1): 150–162.  https://doi.org/10.1016/j.gr.2010.05.007 Google Scholar
  76. Tang, H. Y., Zheng, J. P., Yu, C. M., 2009. Age and Composition of the Rushan Intrusive Complex in the Northern Sulu Orogen, Eastern China: Petrogenesis and Lithospheric Mantle Evolution. Geological Magazine, 146(2): 199–215.  https://doi.org/10.1017/s0016756808005463 Google Scholar
  77. Tang, H. Y., Zheng, J. P., Yu, C. M., et al., 2014. Multistage Crust-Mantle Interactions during the Destruction of the North China Craton: Age and Composition of the Early Cretaceous Intrusions in the Jiaodong Peninsula. Li-thos, 190–191: 52–70.  https://doi.org/10.1016/j.lithos.2013.12.002 Google Scholar
  78. Tang, J., Zheng, Y. F., Wu, Y. B., et al., 2007. Geochronology and Geochemistry of Metamorphic Rocks in the Jiaobei Terrane: Constraints on Its Tectonic Affinity in the Sulu Orogen. Precambrian Research, 152(1/2): 48–82.  https://doi.org/10.1016/j.precamres.2006.09.001 Google Scholar
  79. Tang, J., Zheng, Y. F., Wu, Y. B., et al., 2008. Zircon U-Pb Age and Geo-chemical Constraints on the Tectonic Affinity of the Jiaodong Terrane in the Sulu Orogen, China. Precambrian Research, 161(3/4): 389–418.  https://doi.org/10.1016/j.precamres.2007.09.008 Google Scholar
  80. Wan, Y. S., Dong, C. Y., Wang, S. J., et al., 2014. Middle Neoarchean Mag-matism in Western Shandong, North China Craton: SHRIMP ZirconGoogle Scholar
  81. Dating and LA-ICP-MS Hf Isotope Analysis. Precambrian Research, 1: 865–884.  https://doi.org/10.1016/j.precamres.2014.07.016 Google Scholar
  82. Wan, Y. S., Liu, D. Y., Wang, S. J., et al., 2011. ∼2.7 Ga Juvenile Crust Formation in the North China Craton (Taishan-Xintai Area, Western Shandong Province): Further Evidence of an Understated Event from U-Pb Dating and Hf Isotopic Composition of Zircon. Precambrian Research, 186(1–4): 169–180.  https://doi.org/10.1016/j.precamres.2011.01.015 Google Scholar
  83. Wang, H., Xu, Z. W., Lu, X. C., et al., 2016. Two-Types of Early Cretaceous Adakitic Porphyries from the Luxi Terrane, Eastern North China Block: Melting of Subducted Paleo-Pacific Slab and Delaminated Newly Un-derplated Lower Crust. Lithos, 240–243: 140–154.  https://doi.org/10.1016/j.lithos.2015.11.011 Google Scholar
  84. Wang, K., Li, Z. X., Dong, S. W., et al., 2018. Early Crustal Evolution of the Yangtze Craton, South China: New Constraints from Zircon U-Pb-Hf Isotopes and Geochemistry of ca. 2.9–2.6 Ga Granitic Rocks in the Zhongxiang Complex. Precambrian Research, 1: 325–352.  https://doi.org/10.1016/j.precamres.2018.05.016 Google Scholar
  85. Wang, L. G., Qiu, Y. M., McNaughton, N. J., et al., 1998. Constraints on Crustal Evolution and Gold Metallogeny in the Northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb Zircon Studies of Granitoids. Ore Geology Reviews, 13(1–5): 275–291.  https://doi.org/10.1016/s0169-1368(97)00022-x Google Scholar
  86. Wang, S. J., Wan, Y. S., Zhang, C. J., et al., 2008. Major Advanced Devel-opement Gained in Studying Early Cambrian Geology in Luxi Area. Land & Resources in Shandong Province, 24(1): 10–20 (in Chinese with English Abstract)Google Scholar
  87. Wu, F. Y., Zhao, G. C., Wilde, S. A., et al., 2005. Nd Isotopic Constraints on Crustal Formation in the North China Craton. Journal of Asian Earth Sciences, 24(5): 523–545.  https://doi.org/10.1016/j.jseaes.2003.10.011 Google Scholar
  88. Wu, G. Y., Ma, L., Chen, H. J., et al., 2003. Tectonic Evolution of the Su-Wan Block, Creation of the Su-Lu Orogen and Orogenesis Coupled Basin Developing. Geotectonica et Metallogenia, 27(4): 337–353 (in Chinese with English Abstract)Google Scholar
  89. Wu, M. L., Zhao, G. C., Sun, M., et al., 2013. Zircon U-Pb Geochronology and Hf Isotopes of Major Lithologies from the Yishui Terrane: Implications for the Crustal Evolution of the Eastern Block, North China Craton. Lithos, 170–171: 164–178.  https://doi.org/10.1016/j.lithos.2013.03.005 Google Scholar
  90. Wu, M. L., Zhao, G. C., Sun, M., et al., 2014. Zircon U-Pb Geochronology and Hf Isotopes of Major Lithologies from the Jiaodong Terrane: Implications for the Crustal Evolution of the Eastern Block of the North China Craton. Lithos, 190–191: 71–84.  https://doi.org/10.1016/j.li-thos.2013.12.004 Google Scholar
  91. Xie, S. W., Xie, H. Q., Wang, S. J., et al., 2014. Ca. 2.9 Ga Granitoid Magmatism in Eastern Shandong, North China Craton: Zircon Dating, Hf-in-Zircon Isotopic Analysis and Whole-Rock Geochemistry. Precambrian Research, 1: 538–562.  https://doi.org/10.1016/j.precamres.2014.09.006 Google Scholar
  92. Xu, J. Q., Li, Z., 2015. Middle–Late Mesozoic Sedimentary Provenances of the Luxi and Jiaolai Areas: Implications for Tectonic Evolution of the North China Block. Journal of Asian Earth Sciences, 1: 284–301.  https://doi.org/10.1016/j.jseaes.2015.07.008 Google Scholar
  93. Xu, Y. G., Huang, X. L., Ma, J. L., et al., 2004. Crust-Mantle Interaction during the Tectono-Thermal Reactivation of the North China Craton: Constraints from SHRIMP Zircon U-Pb Chronology and Geochemistry of Mesozoic Plutons from Western Shandong. Contributions to Mineralogy and Petrology, 147(6): 750–767.  https://doi.org/10.1007/s00410-004-0594-y Google Scholar
  94. Xu, Y., Yang, K. G., Li, R. H., et al., 2013. Main Progresses in the Study of Precambrian Basement of the North Sulu Ultra-High Pressure Metamorphic Belt, Eastern China. Geoscience, 27(2): 248–259 (in Chinese with English Abstract)Google Scholar
  95. Xu, Y., Yang, M. L., Polat, A., et al., 2018. Zircon U-Pb Ages and Hf Isotopic Compositions of Two Types of Supracrustal Rocks in the Northeastern Sulu UHP Terrane: Constraints on the Surface Boundary between South China and North China. International Geology Review, 61(5): 539–561.  https://doi.org/10.1080/00206814.2018.1437787 Google Scholar
  96. Yang, J. S., Wooden, J. L., Wu, C. L., et al., 2003. SHRIMP U-Pb Dating of Coesite-Bearing Zircon from the Ultrahigh-Pressure Metamorphic Rocks, Sulu Terrane, East China. Journal of Metamorphic Geology, 21(6): 551–560.  https://doi.org/10.1046/j.1525-1314.2003.00463.x Google Scholar
  97. Yang, K. F., Fan, H. R., Santosh, M., et al., 2012. Reactivation of the Archean Lower Crust: Implications for Zircon Geochronology, Elemental and Sr-Nd-Hf Isotopic Geochemistry of Late Mesozoic Granitoids from Northwestern Jiaodong Terrane, the North China Craton. Lithos, 146–147: 112–127.  https://doi.org/10.1016/j.lithos.2012.04.035 Google Scholar
  98. Yang, Q. Y., Santosh, M., Shen, J. F., et al., 2014. Juvenile vs. Recycled Crust in NE China: Zircon U-Pb Geochronology, Hf Isotope and an Integrated Model for Mesozoic Gold Mineralization in the Jiaodong Peninsula. Gondwana Research, 25(4): 1445–1468.  https://doi.org/10.1016/j.gr.2013.06.003 Google Scholar
  99. Yin, A., Nie, S. Y., 1993. An Indentation Model for the North and South China Collision and the Development of the Tan-Lu and Honam Fault Systems, Eastern Asia. Tectonics, 12(4): 801–813.  https://doi.org/10.1029/93tc00313 Google Scholar
  100. Ying, J. F., Zhou, X. H., Zhang, H. F., 2005. The Geochemical Variations of Mid-Cretaceous Lavas across Western Shandong Province, China and their Tectonic Implications. International Journal of Earth Sciences, 95(1): 68–79.  https://doi.org/10.1007/s00531-005-0509-9 Google Scholar
  101. Yue, B. J., Zhang, H., Liao, J., et al., 2017. Neoproterozoic Granitic Gneiss Offshore the Shandong Peninsula of Eastern China: The Eastward Extension of the Sulu Orogenic Belt. International Geology Review, 59(8): 1015–1027.  https://doi.org/10.1080/00206814.2016.1250127 Google Scholar
  102. Zeng, G., Chen, L. H., Hofmann, A. W., et al., 2011. Crust Recycling in the Sources of Two Parallel Volcanic Chains in Shandong, North China. Earth and Planetary Science Letters, 302(3/4): 359–368.  https://doi.org/10.1016/j.epsl.2010.12.026 Google Scholar
  103. Zhai, M. G., 2014. Multi-Stage Crustal Growth and Cratonization of the North China Craton. Geoscience Frontiers, 5(4): 457–469.  https://doi.org/10.1016/j.gsf.2014.01.003 Google Scholar
  104. Zhai, M. G., Guo, J. H., Li, Z., et al., 2007a. Extension of the Sulu UHP Belt to the Korean Peninsula: Evidence from Orogenic Belts, Precambrian Basements, and Paleozoic Sedimentary Basins. Geological Journal of China Universities, 13(3): 415–428 (in Chinese with English Abstract)Google Scholar
  105. Zhai, M. G., Guo, J. H., Li, Z., et al., 2007b. Linking the Sulu UHP Belt to the Korean Peninsula: Evidence from Eclogite, Precambrian Basement, and Paleozoic Sedimentary Basins. Gondwana Research, 12(4): 388–403.  https://doi.org/10.1016/j.gr.2007.02.003 Google Scholar
  106. Zhai, M. G., Ni, Z. Y., Oh, C. W., et al., 2005. SHRIMP Zircon Age of a Proterozoic Rapakivi Granite Batholith in the Gyeonggi Massif (South Korea) and Its Geological Implications. Geological Magazine, 142(1): 23–30.  https://doi.org/10.1017/s001675680400994x Google Scholar
  107. Zhang, H. F., 2012. Destruction of Ancient Lower Crust through Magma Un-derplating beneath Jiaodong Peninsula, North China Craton: U-Pb and Hf Isotopic Evidence from Granulite Xenoliths. Gondwana Research, 21(1): 281–292.  https://doi.org/10.1016/j.gr.2011.05.013 Google Scholar
  108. Zhang, H. F., Sun, M., Zhou, X. H., et al., 2005. Geochemical Constraints on the Origin of Mesozoic Alkaline Intrusive Complexes from the North China Craton and Tectonic Implications. Lithos, 81(1–4): 297–317.  https://doi.org/10.1016/j.lithos.2004.12.015 Google Scholar
  109. Zhang, J., Zhao, Z. F., Zheng, Y. F., et al., 2010. Postcollisional Magmatism: Geochemical Constraints on the Petrogenesis of Mesozoic Granitoids in the Sulu Orogen, China. Lithos, 119(3/4): 512–536.  https://doi.org/10.1016/j.lithos.2010.08.005 Google Scholar
  110. Zhang, J., Zhao, Z. F., Zheng, Y. F., et al., 2012. Zircon Hf-O Isotope and Whole-Rock Geochemical Constraints on Origin of Postcollisional Mafic to Felsic Dykes in the Sulu Orogen. Lithos, 136–139: 225–245.  https://doi.org/10.1016/j.lithos.2011.06.006 Google Scholar
  111. Zhang, S. B., Tang, J., Zheng, Y. F., 2014. Contrasting Lu-Hf Isotopes in Zircon from Precambrian Metamorphic Rocks in the Jiaodong Peninsula: Constraints on the Tectonic Suture between North China and South China. Precambrian Research, 1: 29–50.  https://doi.org/10.1016/j.precamres.2014.01.006 Google Scholar
  112. Zhang, X. M., Zhang, Y. Q., Ji, W., 2007. Fault Distribution Patterns of the Luxi Block, Shandong, and Mesozoic Sedimentary-Magmatic-Structural Evolution Sequence. Journal of Geomechanics, 13(2): 163–172 (in Chinese with English Abstract)Google Scholar
  113. Zhang, X. O., Cawood, P. A., Wilde, S. A., et al., 2003. Geology and Timing of Mineralization at the Cangshang Gold Deposit, North-Western Jiao-dong Peninsula, China. Mineralium Deposita, 38(2): 141–153.  https://doi.org/10.1007/s00126-002-0290-7 Google Scholar
  114. Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177–202.  https://doi.org/10.1016/j.precamres.2004.10.002 Google Scholar
  115. Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precam-brian Research, 107(1): 45–73.  https://doi.org/10.1016/s0301-9268(00)00154-6 Google Scholar
  116. Zhao, L., Li, T., Peng, P., et al., 2015. Anatomy of Zircon Growth in High Pressure Granulites: SIMS U-Pb geochronology and Lu-Hf Isotopes from the Jiaobei Terrane, Eastern North China Craton. Gondwana Research, 28(4): 1373–1390.  https://doi.org/10.1016/j.gr.2014.10.009 Google Scholar
  117. Zhao, R., Wang, Q. F., Liu, X. F., et al., 2016. Architecture of the Sulu Crustal Suture between the North China Craton and Yangtze Craton: Constraints from Mesozoic Granitoids. Lithos, 266–267: 348–361.  https://doi.org/10.1016/j.lithos.2016.10.018 Google Scholar
  118. Zhao, Z. F., Zheng, Y. F., Zhang, J., et al., 2012. Syn-Exhumation Magma-tism during Continental Collision: Evidence from Alkaline Intrusives of Triassic Age in the Sulu Orogen. Chemical Geology, 1: 70–88.  https://doi.org/10.1016/j.chemgeo.2011.11.002 Google Scholar
  119. Zhou, J. B., Wilde, S. A., Liu, F. L., et al., 2012. Zircon U-Pb and Lu-Hf Isotope Study of the Neoproterozoic Haizhou Group in the Sulu Orogen: Provenance and Tectonic Implications. Lithos, 136–139: 261–281.  https://doi.org/10.1016/j.lithos.2011.01.015 Google Scholar
  120. Zhou, Y. Q., Zhang, Z. K., Liang, W. D., et al., 2015. Late Mesozonic Tectono-Magmatic Activities and Prototype Basin Restoration in Eastern Shandong Province, China. Geoscience Frontiers, 1: 137–156 (in Chinese with English Abstract)Google Scholar
  121. Zhou, Y. Q., Zhou, T. F., Ma, C. Q., et al., 2018. Transcrustal Magmatic System of Early Cretaceous (Qingshan Stage) in Eastern Shandong and the Basin Formation Related to “Thermal Upwelling-Detachment”. Earth Science, 43(11): 3373–3390.  https://doi.org/10.3799/dqkx.2018.998 (in Chinese with English Abstract)Google Scholar
  122. Zhou, Z. M., Ma, C. Q., Wang, L. X., et al., 2018. A Source-Depleted Early Jurassic Granitic Pluton from South China: Implication to the Mesozoic Juvenile Accretion of the South China Crust. Lithos, 300–301: 278–290.  https://doi.org/10.1016/j.lithos.2017.11.017 Google Scholar
  123. Zhu, K. Y., Li, Z. X., Xia, Q. K., et al., 2017. Revisiting Mesozoic Felsic Intrusions in Eastern South China: Spatial and Temporal Variations and Tectonic Significance. Lithos, 294–295: 147–163.  https://doi.org/10.1016/j.lithos.2017.10.008 Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of GeosciencesChina University of PetroleumQingdaoChina
  2. 2.Function Laboratory for Marine Mineral Resource Geology and ExplorationNational Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations